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A functional equation that characterizes generalized Beckenbach-Gini
means which are invariant with respect to Beckenbach-Gini mean-type
mappings is considered. In the case when an invariant mean is either
arithmetic or geometric or harmonic, without any regularity conditions,
all solutions are found. In the general case, under some regularity
assumptions, a necceasary condition is given. For positively homoge-
neous Beckenbach-Gini means a complete list of solutions is established.
Translative Beckenbach-Gini means are also examined.

mean-type mapping, iteration, invariant mean, Beckenbach-Gini mean,
homogeneous mean, translative mean
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Let I C R be an interval. By a mean we mean a function M : I — T

such that

If for all z,

min(z,y) < M(z,y) < max(z,y)  (e,y €1).

y € I,z # y, these inequalities are sharp, we call M to be a

strict mean. It is proved in [6] that if M, N : I? — T are strict continuous
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means then the sequence of iterates of the mean-type mapping (M, N) :
I2 — I? converges to a mean-type mapping (K, K) : I? — I? where K
is a unique (M, N)-invariant mean, i.e.

K (M(z,y),N(z,y) = K(z,y)  (e,y€]).

There are some important special classes of means, for instance, quasi-
arithmetic means, Gini means, Stolarsky means (cf. [3]). In this con-
nection the following general question arises. Given a class of means,
determine all pairs (M,N) from this class such that their (unique)
(M, N)-invariant mean K is also a member of this class. This prob-
lem, under some regularity assumption, has been solved for the class
of quasi-arithmetic means in [7]. In the present paper we examine this
problem for the class of generalized Beckenbach-Gini means My : 12 — T
which are of the form
. of@) +yfly)
Myle9) = =500 0 (myel),

where f : I — (0,00) is a function, called a generator of the mean. This
mean is a special quasi-arithmetic weighted mean. In the case when
f is a power function, the mean My was considered by Gini (5] and
Beckenbach [2]. Thus the above invariant mean relation reduces to the
functional equation

Mi (My(z,y), My(2,y)) = Mi(z,y)  (z,y €1), (1)

with three unknown functions f, g,k : I — (0,00).

As the arithmetic mean A is a Beckenbach-Gini mean, in section
2 we determine all pairs of functions (f,g) such that A is (My, My)-
invariant. In this context the translative Beckenbach-Gini means are
considered. Since the geometric mean G and harmonic mean H are
also of Beckenbach-Gini type, in section 3 we establish all the pair of
functions (f, g) such that G and H are (My, M)-invariant.

In section 4 we show that, under some regularity assumption, if Mj,
is (My, M,)-invariant, i.e. eq. (1) is satisfied, then, necessarily, for some

e>0;

h=cV/fg.
Using this result, in section 5, we find all positively homogeneous means
My, My and My, such that My, is (My, My)-invariant.

1. AUXILIARY RESULTS

Some properties of Beckenbach-Gini means can be found in [3]. We
begin with recalling the following easy to verify
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Remark 1. Let I C R be an interval and f,g : I — (0,00). Then
My = M, if, and only if, g = cf for some ¢ > 0.
An important role is played by

Lemma 1. Let I C R be an interval. If f : I — (0,00) is continuously
differentiable then

Ty - Sy Pl

I e @

Proof. From the definition of My we have

oM, f(z b= [@?+ 1 (@)f ) +2f'(@)f ) = yf'(@)f )
(@) +7@)?

and, by the symmetry of My,

(z.y€l),

oM, oM,
ﬁyf( oy =ZLwe)  (@myel).

Hence, by simple calculations, we get

B w,y) - Ga,y)

-y
_ LY (@) + 1) + £ ) + F @) W)
(F@) +7w)? '
and, letting y tend to z, we obtain formula (2). m]

In section 4 we need the following.

Lemma 2. Let f : (0,00) — (0,00) be an arbitrary function. The
Beckenbach-Gini mean M : (0,00)> — (0,00) is positively homoge-
neous, ie.

My(tz,ty) = tMf(z,y)  (2,,t>0),

if, and only if, the function ﬁ is multiplicative. If moreover f is mea-
surable or the graph of f is not dense in (0,00)? then f(z) = f(1)z?,z >
0, for some p € R, and

I}H»l + y’-'+|

Myley) =5

(z,y>0).



222 J. Matkowski

Proof. For every t > 0 define f; : (0,00) = (0,00) by fe(z) := f(tz),

> 0. Then, by Remark 1, M; is homogeneous iff M; = M;, for all

t >0, that is, there exists a function ¢ : (0,00) — (0,00) such that
fltz) =c(t)f(z)  (2,t>0).

Setting here z = 1 we get f(t) = f(1)c(t) for all t > 0, and, consequently,
fWf(ta) = fO)f(z)  (2,t>0),

which means that the function 7y is multiplicative. The converse im-
plication is obvious. The second part follows from the first one (cf. [1],
Theorem 3, p. 14). a

2. ‘WHEN THE ARITHMETIC MEAN IS
INVARIANT; TRANSLATIVE
BECKENBACH-GINI MEANS

Taking a constant in the definition of Beckenbach-Gini mean

we get the arithmetic mean A(z,y) = ¥, z,y € R.

Theorem 1. Let I C R be an mterval and f,g : I = (0,00). The

following conditions are equivalent:

(1) the arithmetic mean A is (My, M,)-invariant, i.e.

My(z,y) + My(z,y) =z +y  (zy€l); 3
(2) there is a ¢ > 0 such that
fl@)gle)=c (z€1)
(3) My =My, ie.
yf(z) +2f(y)
f@)+f)

Moreover, for every continuous function f : I —+ (0,00), the sequence of
iterates of the mapping (M, My/s) converges to the arithmetic mean.

Proof. Setting h(z) =1, z € I, in (1) gives the equation A(My, M) =
A, ie. (3), which is equivalent to
of(2) +yf@) | zo(z) +v9(y)
@+ T o@+e)

‘This functional equation reduces to the relation
f@)g(z) = fW)ely) (@yel),

My(z,y) = (z,y €1).

=z+y (z,yel).
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and the proofs of equivalences of the conditions 1-3 are obvious. Since
the means My, My are strict, the remaining part of the theorem is a
consequence of Theorem 1 in [6]. o

Remark 2. A counterpart of equation (3) for quasi-arithmetic means
(which is much more difficult and yet not completely solved) leads to an

family of ive quasi-ari ic means

one-
(cf. Z. Daréezy [4]).
In this connection recall that a mean M : B2 — R is called translative
if
Mz +te+t)=Mzy)+t (5.t ER).
Lemma 3. Let f : R = (0,00). The Beckenbach-Gini mean My is
translative if, and only if, the function %F) is exponential, i.e.
fOf@+y) =f=)fly)  (zyeR).
Proof. For every t € R define f; : R =(0,00) by fi(z) := f(z+1),z € R.
Then, by Remark 1, My is translative iff My = My, for all ¢ € R, that
is, when there is a function ¢ : R — (0,00) such that
fle+t)=clt)fle) (steR).
Setting here z = 0 gives f(t) = f(0)g(t), t € R. Hence we get
fOf@+t)=f(2)ft) (zyteR),
which means that the function #/gsis exponential.
Since the converse implication is easy to verify, the proof is completed.
&

Hence we obtain (cf. [1], Theorem 3, p. 14)

Corollary 1. Let f : R — (0,00) be measurable or its graph be not
dense in (0,00) x R. The Beckenbach-Gini mean My is translative if;

and only if, there exists a constant p > 0 such that
zp® +yp?
My(z,y) = ——

7(2,y) o

For arbitrary p > 0, we define Tj,) : R x R — R by

(z,y €R).

zp* +yp?

o (z,y €R).

Ty (2, y) =
Thus {T}, : p > 0)} is a one-parameter family of translative Becken-
bach-Gini means. Applying Theorem 1 we obtain
Corollary 2. For all p,r > 0 the arithmetic mean A is (Ti;), Ty) in-
variant, if and only if, pr = 1. '
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3. THE INVARIANCE OF THE GEOMETRIC
AND HARMONIC MEANS
Taking the generator  — z~'/2 in the definition of Beckenbach-Gini
mean we get the geometric mean G(z,y) := /2y, €,y > 0.
Theorem 2. Let I C (0,00) be an interval and f,g : I = (0,00). The
geometric mean is (My, My)-invariant if, and only if, there is a ¢ > 0
such that e
f@e@ =2 (@en.
Moreover, for all continuous functions f : I — (0,00), ¢ > 0, and g(z) :=
7=, z € I, the sequence of iterates of the mapping (My, M) converges

7f(@
to the geometric mean.

Proof. Writing in the explicit form the equation G(My, My) = G we get
zf(z) +yf(y) z9(z) +y9(y) _
f@)+ ) 9@)+9(y)
which, after simple calculations reduces to the equivalent condition
f@g(z)e=fWelwly  (zyel),

and the result follows. The second statement is an immediate conse-
quence of Theorem 1 in [6].

zy  (zy€el),

Taking the generator z — z~! in the definition of Beckenbach-Gini
mean we get the harmonic mean H.

Theorem 3. Let I C (0,00) be an interval and f,g : I = (0,00). The
harmonic mean is (My, My)-invariant if, and only if, there is a ¢ > 0
such that &

f@)ge)=5  (z€D).
Moreover, for all continuous functions f : I —+ (0,00), ¢ > 0, and g(z) :=
7{57’ z € I, the sequence of iterates of the mapping (My, M,) converges
to the geometric mean.

Proof. Writing the equation H(My, M,) = H in the explicit form we get
z;{rgﬂl/ﬂ%) . 29 z;*—u Y]
QL3I0 9@+l  _ Y (zyel)
/@yl | 29 T+ > 2
E + 2 v
Simple calculation shows that this functional equation is equivalent to

the relation

f(@)9(@)a® = fWew)y®  (eyeD),
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which completes the proof. o
Remark 3. Ta.kmg h(z) = z,z € I, gives a Beckenbach-Gini mean
My(z,y) = —L (which is the contra-harmonic one). It is not difficult

to show Lhat tlns mean is (My, My)-invariant for some functions f, g :
I (0,00), ie.

2 2
2f(@)+yf(y, z9(x)+yg(y;
G50 ) * ( 9(a)+(y) ) g 4y?
2f(z)+yf( 29(z)+ug(y; -
72‘: e+ 5 z§+g(,,) oty

if, and only if, f = ah and g = bh, for some positive a,b € R, i.e., if, and
only if, My = My, = My (cf. Remark 1).

(zy €1),

This remark shows that the classical means A, G and H play a special
role in the theory of invariant Beckenbach-Gini means.

4. A NECESSARY CONDITION

In this section we prove the following

Theorem 4. Let I C R be an interval. Suppose that f,g: I — (0,00)
are differentiable and h : I — (0,00) is twice differentiable. If the mean
My, is (My, My)-invariant then there is a constant ¢ > 0 such that

=cvfo

Proof. Suppose that a mean Mj, is (M, My)-invariant. Then the func-
tions f,g and h satisfy equation (1) which, by the definition of Becken-
bach-Gini mean, can be written in the form

[My (2, y)h (M (2,y)) + My(z, y)h (My(2,9))] (h(z) + h(y))
= (zh(z) + yh(y)) [h (Mf(2,9)) + b (My(z,9))]  (z,y € D).
Denote, for convenience, the expressions of the left and right hand sides
of this equation by L(z,y) and R(z,y), respectively. Since L = R we

have
oL_or  oL_or
or Oz’ oy oy’
and, consequently,

ey - F@y)  Fen) -y
z-y - -y

(z,y €1).
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By simple calculations we have

oL oL M, M,
iyi_L(m = [h(My) + Mk (M7)] @[h(z ) +h(y)]
Yy T-y
ony _ oM,
+ [h(My) + M, (My)) %%[h(:) +h(y)]
+ 5 3) + Myhiay) HELZ G,
and
9B (.y) - PB(z,y) n R W
2 z—f :[h(Mf)-#h(Mg)]Mw
M, m IM, M,
+ [zh(z) + yh(y)) |:h (M,)Ly"y— +H(M, )Tiifyi] ,

where, for short, My = M(z,y) and My = My(z,y). Letting here
y — z and applying Lemma 1, the continuity of the means My, My, and
the relation My(z,z) = ¢ = My(z,z), = € I, we get

h(z) + 2k (z)] mf) 42 ((f)’] h(z) + zh(z)K (z)
= h(z)[2 (z) + zh"(z)] + zh(z)' (z) [ /((;)) g((:))]

which, after reduction, can be written in the form

M@ @) @

hz) — fle)  gle)

It follows that there is a ¢ > 0 such that
h(z)? =cf(z)g(z) (z€I),

which completes the proof. [m]

(zel).

Remark 4. The condition given in this theorem is not sufficient. To
show that the converse implication is not true take f,g,h : (0,00) —
(0,00) defined by

f@) = 1LH g(z) =z(z+1), hig)i=z (z>0).



On invariant generalized Beckenbach-Gini means 227

Then h = /fg and, it is easy to verify the mean M is not (Mjy, My)-
invariant (cf. also Remark 3.

Thus the problem to determine some neccesary and sufficient condi-
tions is open.

5. HOMOGENEOUS BECKENBACH-GINI
MEANS

In this section we present the following

Theorem 5. Let each of the functions f,g,h : (0,00) — (0,00) be
measurable or its graph be not dense in (0,00)%. Suppose that the
Beckenbach-Gini means My, My, M}, are positively homogeneous. Then
My, is (Mg, My)-invariant if, and only if, one of the following cases oc-
curs:

(1) there is a p € R such that

f@) _g@) _ hiz)

FA /IR ol S =df z>0),
O R0 >0
and, consequently,
_ _ ol gl
My(z,y) = My(@y) = Mi(e,9) = =5 (@ >0

(2) there exists a p € R such that
fl@)=fM)e?,  g(@)=g(1)e™,  hz)=h1) (z>0),
and, consequently,

gL 4 Pl
Mylzy) =~

(3) there is a p € R such that

P 4 yl-P

o My =S

, o My=A

f@)=fWe,  g(@) =g()e!,  h(z) =k (z>0),

and, consequently,

ZP+L 4 Pl
P+ yP

zP+y?

My(a,y) = T

s My(a,y) = My =G;
(4) there is a p € R such that

@) =1, gle) =92 h@)=hl)e™  (z>0),
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and, consequently,

gPH! 4 yptl
zP +yP

7Pl 4yt

Myla,y) = e

v My(ey) = My =H

Proof. Without any loss of generality we may assume that at least
two of the means My, My, M}, are not the same. The homogeneity of
My, Mg, Mj, in view of Lemma 2, implies that there exist p,q,r € R
such that
fl@)=f)e?,  g(z)=9()z?,  h(z)=h(l)a" (2>0).
Since f, g, h satisfy the assumptions of Theorem 5, we infer that
hz) =cV/f(z)g(z)  (z>0),

for a positive ¢ > 0, and consequently,
ptg

7

Now the (My, My)-invariance of the mean Mj, i.e. equation (1), can be
written in the form

r=

ZrHl g\ B enn P
+
P+ yP 29+ y¢
2P LB [ et eI\ B redt g gest) B2
= + R
2 4y ( 2P +yP ) ( z9+y?
for all z,y > 0.

Suppose that some real numbers p, g satisfy this equation for all z,y >
0. Setting here y = 1 gives

1\ FFE ety
SEH 1 [t 41\ gett 1\
I {( 2P+ 1 ) +< 20+ 1 ) ]=0
for all z > 0. Denote by Fp4(z) the left hand side of this identity. Then,
of course,

pigs2
£

da*
‘mFm(l) =0

for all nonnegative integers k. Careful calculations show that

dTAFM(l) (k=0,1,..,5),
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for all p,g € R. Only the condition

d°
gz re(1) =0
reduces to the condition
15
B’ C+OE+a+)p+g+2) =0
(we omit long and tedious calculations). Consequently, either ¢ = p or
g=-porg=—p—1orq=—p—2. Since the converse implication is
easy to verify, the proof is completed.
Recall that for every p € R, a power mean M| : (0,00)2 — (0,00) is
defined by

1/p
Wiy = (25E) 7 wron MYy = v

Theorem 6. Let p,q € R. Then
29¥L 4 ol

MUy ==t @y>0) @

if, and only if, either g=0,p=1org=-1=p,org=—5,p=0.
Proof. Setting y = 1 in (4) gives

2P+ 1\P a4
( 2 ) S

Calculating the second and the forth derivatives of both sides and then
substituting z = 1 gives the system of equations

p=2g+1,  8¢(4-¢")=(1-p)(2’—p-15)

(z>0).

Hence
q(g+1)(2¢+1) =0,

and consequently, either g =0 and p=1,0or ¢ = -1 and p = -1, or
g = —3 and p = 0. The converse implication is easy to verify. a

As an immediate consequence we get the following

Corollary 3. The Beckenbach-Gini and power means coincide if, and
only if, they are equal either to A, or to G or to H.

Applying Theorem 6 we obtain
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Remark 5. A Beckenbach-Gini mean is invariant with respect to a ho-
mogeneous Beckenbach-Gini mean-type mapping if, and only if, it is a
power mean i.e., if, and only if, it is either A, or G or H.
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