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We give some new results concerning the functional equation f(x +y) + f(f(x)
+ f(y)) = ff(x + f(y)) + f(f(x) + y)), proposed by C. Alsina in 1986. We also
investigate a related equation zf(x +y) + f(f(x) + f(y) = f[f(x + 2f(y)) +
f(2f(x) + y)] and we solve it in the class of decreasing involutions of (0,%) onto
itsclf.  © 2001 Academie Press

1. INTRODUCTION

At the 24th i ium on Functional ions, Alsina
(cf. [1]) proposed to ine all conti and ing involutions f:
(0,%) — (0, ) satisfying the functional equation

FCx+9) +f(F(x) +1(9) =FF(x +F()) +F(f(x) + )] (D)

It is easy to check that for every positive ¢ the function f(x) =ex7!,

x > 0, satisfies (1) and the remaining requirements. A partial answer to
Alsina’s question was given in [5]. However, the original problem remains
open.

In [5] we have noticed that without loss of generality we may restrict
ourselves to the case where 1 is the only fixed point of f. It turns out that
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then any solution of (1) satisfies also the equation
flx+1) +f(f(x) +1) =1.

The above equation has already been dealt with. Benz and Elliger [2]
proved that the inverse is the only endomorphism (or antiendomorphism)
of the multiplicative group K* of a field K which satisfies the above
equation. The result has applications in the theory of groups of permuta-
tions and in geometry (cf. [2]). The same equation appears also in the
definition of the so-called KT-nearfields.

Also the form of every decreasing and convex solution of (1) is an open
question. In this context it seems to be interesting that, as we show in
Section 3, all decreasing and geometrically convex (or geometrically con-
cave) solutions of (1) are of the form f(x) = £, x > 0.

In Section 4 we prove that power functions are the only continuous (at
least at one point) solutions of the system

y(at) = ay(t), t>0; y(bt) = By(t), t € (0,1),

where a,b, a, B € (0,%) are fixed and such that a <1 < b and (In b/In a)
& Q. This is a generalization of a similar result from [3] where y was
supposed to be positive while both equations were assumed on (0, ).

The main part of the paper is contained in Section 5. We deal with the
following functional equation

Af(x+y) +f(f(x) +1(9) =Ff(x+ () +(F(x) +3)] (2

of which (1) is a particular case; namely putting z = 1 in (2) we see that
any solution of (2) satisfies (1) as well. Applying the results of Section 4 we
prove that every decreasing solution of Eq. (2) is of the form f(x) = cx™!
for some ¢ > 0.

2. SOME AUXILIARY RESULTS

In this section we recall some known facts about Alsina’s Eq. (1) (cf. [5]).
Let us begin with

Remark 2.1. If f: (0,%) — (0,%) is a continuous and decreasing solu-
tion of (1) then for every ¢ > 0 the function cf enjoys the above properties
as well. It follows that without loss of generality we may assume f(1) = 1.

LemMA 22 (cf. [5, Lemma 1]). Let f: (0,%) —= (0,%) be a strictly
decreasing solution of (1) with f(1) = 1. Then f is an involution of (0,=), i.c.,
fof=idgu
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LEMMA 2.3 (cf. [5, Theorem 5]. Let f: (0,%) — (0,%) be a continuous
and strictly decreasing solution of (1). If the functions g, h: (0,%) = (0,%)
defined by

_ )] _ Bl

2(x) and  h(x)

are monotonic then there exists a ¢ > 0 such that

) = e

for every x > 0.

3. GEOMETRICALLY CONVEX SOLUTIONS
OF ALSINA’S EQUATION

Let I c(0,%) be an interval. A function f: I — (0,) is said to be
geometrically Jensen convex iff

(Vo) = VA=) F()

for all x,y € I. If a function f satisfies the reverse inequality then we say
that it is geometrically Jensen concave.

Remark 3.1. Let f: (0,%) — (0,%) be continuous. It is easy to verify
that the following conditions are equivalent

(i) f is geometrically Jensen convex (concave);
(ii) loge f cexp is convex (concave) on R;
(iii) for every t > 1 the function

f(=)
f(x)

(0,) 3x -

is nondecreasing (nonincreasing).

It was noticed in [3] (see also [4]) that the condition (iii) appears in a
natural way in some problems connected with a characterization of the L?
norm and in iteration theory. The main result of the present section is the
following.

THEOREM 3.2. If f: (0,®) = (0,) is a strictly decreasing and geometri-
cally Jensen convex (concave) solution of Eq. (1) then there exists a ¢ > 0
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such that
f(x) =~

for everyx > 0.

Proof. Suppose that f is geomemcally Jensen concave in (0,). Since f
is strictly ing it has to be T . From Remark 3.1
we infer that the function

f(=)
0,2) 5x > —=
0925270
is nondecreasing for every ¢ > 1. Hence for every ¢ > 1 the function
X
(0.9 25 » LT
x
is i ing, as a i of a d ing function and f

which is both decreasing and involutory (cf. Lemma 2.2). It remains to
apply Lemma 2.3 to conclude the proof. The argument is analogous in the
case where convexity is replaced by concavity.

Remark 3.3. Note that for every ¢ > 0 the function f: (0,%) — (0,%)
given by f(x) = ex™! is a geometrically Jensen function, i.e., f satisfies

1) = Vi)
for all positive x and y.

Remark 3.4. It is an open question whether every strictly decreasing
and convex solution of (1) is of the form f(x) = cx™!, x > 0.

4. A SYSTEM OF FUNCTIONAL EQUATIONS

To determine all continuous and decreasing solutions of the functional
Eq. (2) we need the following.

PROPOSITION 4.1.  Let a, b, a, and B be positive reals and suppose that
¥: (0,%) > R\ {0} is continuous at a point s € (0,1) and satisfies the system
of functional equations

y(at) = ay(t)  ift>0,

y(bt) = By(t) fo<r<1. O}
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If a<1<b and &% is irational then there exists a p € R such that
y(t) = y(Dt? forall t € (0,).
Proof.  An easy induction shows that (3) implies
y(a"b™t) = a'B"y(1) 4

for every (n,m,t) € N X N X (0,%) such that 6™~ 'a"t € (0,1). Observe
that by the well known Kronecker theorem the set

A= (a"b™:n,m € N)

is dense in (0,%). Now, fix arbitrarily a ¢ € (0,) and choose two se-
quences (1), <, and (m,), , of positive integers such that

i ~ B ©
and
. e pm, 3
pmaon =, ©®

It follows from (6) that for k large enough, say k > k,, we have
ambmit e (0,1),
because we assumed s € (0,1). Since b > 1, we can use (4) to get
Y(@b™e) = ampmy (1)

for every k > k,. Hence, letting kK — =« and using continuity of y at s we
obtain

7(s) = 7(0) lim a"sp™. ™

Note that in particular y(s) and y() are of the same sign; without loss of
generality we may assume that both are positive. If & = g =1 then (7)
implies the assertion with p = 0. Observe that cases a =1# B and
a # 1 = B are impossible. Indeed, otherwise (7) would imply in view of (5)
that y(s) € {0,°}, which is impossible in view of our assumptions. It
remains therefore to consider the case a # 1 # B. We have assumed that
s, t, ¥(s), and y(t) are positive. Hence we can take logarithms of both
sides in (6) and (7). If we divide them by m,, let k — o and use (5). Then
we see that
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Thus in particular there exists a p € R such that

log B loga

log b loga

=p
or
B=0b" and a=a’.
Inserting the above into (7) and using (6) we obtain the equality
5\?
ORI HE! ®

which holds for every ¢ € (0,%). In particular, inserting ¢ = 1 into (8) we
get
¥(s)

P

y() =

which concludes the proof in view of (8).

5. DECREASING SOLUTIONS OF EQ. (2)

Now we are in position to prove the main result concerning Eq. (2).

THEOREM 5.1. A function f: (0,%) — (0,%) is a non-increasing solution
of (2) if and only if there exists a positive constant ¢ such that

f(x) =
for every x € (0,).

Proof. The “if” part is trivial to check. Let f be a non-increasing
solution of Eq. (2). Suppose that there are a,b >0, a <b, such that
f(a) = f(b). Then, by the monotonicity of f,

f(x) =f(a), x¢€[a,b].

Take arbitrary x, y € (a, b). For all positive and small enough numbers z
we have

x+7(y),  #(x) +y<lab],
and, by Eq. (2), we get
#(x +y) +1(2f(a)) = f(2f(a)),
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i.e, zf(x +y) = 0. This contradiction shows that f is in fact strictly
decreasing. On the other hand, the monotonicity of f implies that

c:= lim f(x)

exists, is finite, and non-negative. If ¢ were positive then letting x and y
tend to % in (2) we would get

z¢ + f(2¢) =f(2¢),

whence zc = 0 for all z > 0. This contradiction shows that ¢ = 0. Hence,
taking into account that z in (2) is arbitrary, we infer that

F((0,%)) = (0,%).

Thus we have shown that f is a decreasing bijection of (0,%) onto itself
and, consequently, f is continuous.

Now, applying Remark 2.1 to Eq. (2) with z = 1 we may assume that
f(1) = 1. Thus we only have to show that f(x) =x! for all x > 0. We will
use Proposition 4.1 and therefore our first step is to show that f satisfies a
suitable system of functional equations. Setting x =y =z =1 in (2) we
get

2/(2) =1(2/(2))-

Since f is decreasing, it has only one fixed point at 1, and thus the above
equality implies

2 ! d : 2 9

@=-3 e g3)-2 ®

because f is an involution (cf. Remark 2.1 and Lemma 2.2). Now, if we set
x =y =1in(2) and use (9) we get

3G+ =f2fz+ 1)

for all z > 0. Substituting ¢ for z + 1 in the above equality and using again
the relation f? = id we obtain

i(5) =200 (10
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for every ¢ > 1. From (9) and (10) we infer that f(4) = ;. Hence substitut-
ing x =y = } in (2) results in

REEES
b ey e o "
2+ 3 f|2f| 2 z
or, after applying f to both sides of the above equality,
. 2 L +2
v 3o o2
for every z > 0. Put = z + 1 to see that the above is equivalent to

1
1) = 350) (&)

for every ¢ > 1. Taking into account that f is strictly decreasing and
fQ1) =1, we see that f(x) > 1 for every x € (0,1). Thus we can put f(x)
instead of ¢ in (10) and make sure that (11) holds for ¢ € (0,1) as well.
Since f(1) = 1 we have proved that (11) holds for all ¢ > 0. Replacing ¢ by
f(2) in (11) and applying f to both sides we get
1
1(31) -2 )

forall £ > 0.
Now, put x = 1 and y =  in (2). We get

Az e+ o(a)) o))+ 3

for every z > 0. Using (9) and (12) for ¢ € (3,2z + 1} we can rewrite the
above equality in the form

f(3)(2z +1) =f(3f(2z + 1))

for every z > 0, or i since f is an il ion as

f(f3)(2z + 1)) =3f(2z + 1)

for all z > 0. If we substitute ¢ = 2z + 1 this implies

F(F3)0) =3f(0)
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for every ¢ > 1. Again, if x € (0,1) then f(x) > 1 and thus inserting f(x)
instead of ¢ in the above equality we obtain after applying f to both sides

f(3x) =f(3)f(x) (13)

for every x € (0,1). Put a = 3, b == 3, a = 2, and B := f(3). Then &2 is
irrational and from (12) and (9) it follows now that f satisfies the
assumptions of Proposition 4.1. Thus f(x) = x” for some p € R and all
x> 0. But f is a decreasing involution whence p = —1. This concludes
the proof.
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