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Abstract. in this paper we give some properties of solutions of the iterative functional
equation f**1(z) = a,f*(z) + - + aoz, considering its characteristic equation. Auseful
method to discuss the general case is detailed described for the case n

1 Introduction

The polynomial-like functional equation of the order n + 1

(@) = anf™(2) + aar f7H2) + o+ 2oz, ag # 0.

z € I aninterval of R. f : I — I is an unknown function, f* denotes
the n-th iterate of #, and g, ay.....a, are real constants, is an important form of
iterative functional equations (see [1]-[8]). There are many particular functional
equations which can be reduced to Eq.( 1.1) (see [8]-[10]).

If f satisfies equation ( 1.1) then all its iterates f**" k € N, belong to the (n+1)-
dimensional linear space spanned by the functions (id|R. f..... ). It is especially
interesting in the context that equation ( 1.1) is not linear one.

It is worth mentioning that Eq.( 1.1), related to the (n-+1)-th order linear difference
equation
Thintl = CnThin + o + G1Tks1 + G0Tk,
is a nonlinear equation since the set of solutions does not span a linear space, and
the Babbage functional equation
(=)
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is a spacial case of Eq.( 1.1).

An important role is played by the characteristic polynomial of Eq.( 1.1). Theoren
0 says that if two equations of the type (1.1) are of the orders n and m, n < m,
and the characteristic polynomial of Eq.( 1.1) of order n devides the characteristic
polynomial of Eq.( 1.1) of order m, then every solution of the Eq.( 1.1) of the
smaller order satisfies the second equation.

This partially explain why we confine our considerations mainly to Eq.( 1.1) of the
smallest nontrivial order. We give a complete description of all continuous solutions
of Eq.(1.1) forn =1, ie.,

(1.2) £2(2) = a1f(2) + a0z, ao#0. s €R,
through discussing its characteristic equation. A useful method to discuss the
general case of Eq.( 1.1) is described naturally in this procedure. Let us mention

that Eq.( 1.2) was considered by S.Nabeya [8] with using a little different methods
(cf. Final Remarks in chapter III).

2 A Basic Result

Denote by N and Z the sets of positive integers and integers, respectively, and put
No:= NU{0}.

For n = 0 the Eq.( 1.1) reduces to f(z) = agz. Thus. in this case, f : R — R
satisfies (1.1) if. and only if, f is a lincar function. Note that. in general case. a
linear function

flz)=rz, z€R,
where 7 € R (or r € C) is fixed. satisfies Eq.( 1.1) iff

™ = 4" 4 L+ ey ag
This algebraic equation is called the characteristic equation of Eq.( 1.1), and the
polynomial

n+l

P(r)

the characteristic polynomial of Eq.( 1.1). Anry is a characteristic roots iff P(r) =
0. The linear function f(z) = rez is termed the characteristic solution of the
equation. Of course there is one-to-one correspondence between the characteristic
roots and the characteristic solutions of Eq.( 1.1), and there are at most n + 1
characteristic solutions. We are mainly interested in the real solutions.

—a,r" — ... — a7 — ag,

The following basic result shows that the characteristic polynomials (cquations)
play an important role in theory of Eq.( 1.1).
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Theorem 1 (cf. Matkouski [6]). Let m,n € N be such that m > n > 1. Suppose

1

P(z) =™ — ap1z™ " = —ag; Q(z) =" —byga™ T — = by

are polynomials such that Q|P (i.e. Q divides P). If f : R — R satisfies the
functional equation

F@) = bt f@) o+ Bf(2) + oz, TER,
then f satisfies the functional equation

f™(z) = amar f™N () + oo + a1 f(z) + a0z, TER.

As the proof of Theorem 0 was not published yet, we include it to the present
paper. we begin with some notation.

Denote by ()i, an arbitrary sequence of complex or real numbers. For each fixed
n € N, we can write the polynomial

Pa(z) = (2 —m)(z —712) -+ (2 =)

in the form

where

TiTias
<i

T (r1sta) 1= T =T,

are the fund 1 sy ic pol, jall

Lemma 1 . The fundamental symmetric polynomials satisfy the relations

T (1o Taga) = TR0 s a) + T T (71 Tn)s

foralln € N,k =1,.m.
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Proof. We have
(=)@ = 2)++ (2 = 1) = 3217 )™,
k=0
and "
(2= 1)@ = 72} o+ (2 = ) = S (=T 1y o)™,
&

and, consequently,

nt1 "
DD T e tasn) 2™ = (2 = 1a) Y (=1 T ()2
iz =}

Let us fix k € {1,..,n}. Comparing the coefficients at z***~* of both sides we

obtain the relation

(=17 (ryy ey Tasr) = (=1)F70(r,
= ()4

7a) = Pt (=1)* 7 (71, s 7)

a) + e Tl (M)

which completes the proof of the claim. o
In the sequel, for a function f : R — R we put
foi=idlg, fri=fof!, neN.

Now can can prove the following

Lemma 2 . Suppose that

P(z) =2 + a2 + .+ mz+ag Q(z) =2 +burz™ + L+ bz + b

are polynomials such that Q|P. If a function f : R — R satisfies the functiona
equation

(2.3) )+ bacafPN2) + o+ bif(2) +hoz =0, zER,
then f satisfies the functional equation

(2.4) (@) + anf(2) + - + a1 f(2) + a0z

Proof. Let 74, .., 7ns1 be the roots of the polynomial P. Since Q|P, we can assum«
that 73, .., are the roots of the polynomial Q. Making use of Vieta formulas, we
can write the functional equations ( 2.3) and ( 2.4) in the forms:

29) S UMy o) 7M@) =0, 2R,



149

and

w1
(2.6) D] S8 )i PR B

k=0

z€R.

Suppose that a function f : R — R satisfies equation ( 2.3). Thus we have
st
E D () 1 75@) =0, 2 ER,

or equivalently,

S U (P fHH(E) 4 (<1 oz =0, 2 € R.
=

Multiplying this equation by (=1)rs; gives
(2.7) i(—m-nmp_,m.....7-n)/““‘"(:) (=) gz = 0,
for all z € R. Replacing in ( 2.5) z by f(z) we get
Sl )4 =0, 2R,
=
which can be written in the form
(2.8) ) +ki(~1)“f;}(r, ..... ) f*1*(z) =0, z€R.
=
Adding the equations ( 2.7) and ( 2.8) by sides we get
@)+ Z( L (s 7a) + Posa Tl (s ma)) 7574 (2)
+(-1)"_+‘r1 e eTasz =0,
for all 2 € R. Now applying Lemma 1 and the definitions of

75 (s o) a0d T (1 )

we hence get
Z( D (s rast) f175(@) =0, 2 €R,

which shows that f satisfies equation ( 2.4). This completes the proof.

o
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Proof of Theorem 1. Let r4,....r be the roots of the polynomial P. Since Q|P,
we can assume that 7y, ...,7, are the roots of the polynomial Q. Put

pu(z) = (z—n)(@=r2) o (z=1a), k=n,..,m

Thus we have Q = p,, and P = p,,. Since mpw for k= n...,m—1, the theorem
is an obvious consequence of the Lemma 2.

Theorem 1 has the following practical meaning. Knowing the theory of equation
(1.1) of the order » € N, and m > n,m € N, then one can establish a lot of
solutions of equation ( 1.1) of the higher order m.

Therefore, in the sequel, we confine our investigations mainly to the case of the
second order, ie. to Eq.( 1.2).

Lemma 3 . Suppose that f : R — R is a solution of Eq.( 1.1). Then

(i) f is one-to-one;

(ii) £ is strictly monotone and onto, provided f is continuous.

Proof. (i) If f(31) = f(y2) then f*(y1) = f*(y2) for all k € N. Hence. by Eq.( 1.1)

aoyy = £ (1) = anf" (1) = o = ax flyr)
= ") = anf"(32) = o = @ f(32) = aoys.

Since ap # 0. it follows that 33 = g2, and, consequently, f is one-to-one. By the
continuity, f must be monotone.

To prove (i) wiite Eq.( L.1) in the form
@) = anf(2) = . — a1 f(2) = aoz.

It follows that the left-hand side is unbounded on each of the intervals (a.o0) and
- (—0co.a). Now the continuity of f on bfR implies that f must be left and right
unbounded. o

A similar reasoning allows to prove the following

Remark 1. Let k € N, and a function F : R* — R be fixed. Suppose that
f:R — R satisfies the functional equation

F(f(2). (=

Then £ is one-to-one; and f is strictly monotone, provided f has the Darboux
property.

fiz) =2, zeR,
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3 Characteristic Equation in the case n =2
In this chapter we deal with equaiton ( 1.2). We shall see that the existence and
uniqueness of continuous solution of this equation depends on the behavior of roots
of the chafacteristic equation

M =ar+a, a#0.

Now, using the Vieta formulas, we rewrite Eq.( 1.2) into the form
(3.9) F(2) = (11 + 72)f(2) = mamaz,
where ry.7s are, in general, nonzero complex roots of the characteristic equation
P =arta. a#0.
Obviously 7.7 satisfy the relations
T4+Ta=a,, ™= —dg.
By Lemma 3 Eq.( 1.2) is also equivalent to

(3.10) f'ztz)=(%+%)f"(:)—iz-

called the dual equation of Eq.( 1.2). where 1/r1.1/r are the characteristic roots
of (3.10).

Lemma 4 . Let f: R — R be an arbitrary solution of Eq.( 1.2).

(i) if the characteristic roots 1,75 of Eq.( 1.2) are different, then

(311)  f(2) = A(n)(f(z) - mz) - Ai(n)(f(z) - m2z). n € No,

where

A= T i= 1
and
(3.12) f(2) = Ba(n)(f 7' (2) = %) = Bi(-n)(f7(2) - Ti) n € No,
where

Bi(-n) =

(ii) if 11 =72 =7 then

(3.13) M) =nr"f(z) = (n = 1)r"z, n€Ny,
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and

(3.14) f(z) =nr'fz) = (n—1)r™"z, n€ N,

Proof. Using the form ( 3.9) of Eq.( 1.2) we have
f(f(2)) = r2f(2) = m(f(z) = 722).
Putting g(z) := f(z) — r2z we can write this equation in a shorter way
9(f(2)) = mg(=)-
Hence by an easy induction we have g(f*(2)) = 17g(z), i.e.,
) = raf™(2) = 17 (f(2) = raz).
Similarly we also get
(@) = f(2) =13 (f(2) = miz).

Now the last two formulas imply ( 3.11). Repeating the same reasoning for ( 3.10)
we get ( 3.12). Furthermore. if 14 = 75 = 7, then Eq.( 3.9) has the form

F(2) = 2rf(2) = 7.
uand Eq.( 3.10) has the form
F2) =27 f(z) -7
Thus ( 3.13) and ( 3.14) follow by the induction. O

Remark 2. All the formulas of Lemma 4 can be obtained from the general solution
of the linear difference equation

Ti+z = Q1Thyr + QOTk-
Conversely, from these formulas, one can easily get the general solution of the
difference equation. For arbitrary 20,2, € R define the sequence {z.}.n € Z.
recursively:
(3.15) Tnsz = (11 +72)Tasr = T172Tn, 2 € Noj
(3.16) Zonez = (74172 =M en,, nEN,
By Lemma 4 we have
(3.17) zn = Ag(n)(z1 = mizo) — Ai(n)(z1 = 7220), n € No,
(3.18) z_ns1 = Ba(-n)(zo — 21/11) = Bu(=n)(zo = 21/m2), n € No.
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It is remarkable that functional equation ( 1.2) is not linear in the sense of the
linearity of the adequate difference equation.

Remark 3. Note that, using Vieta formulas for arbitrary n, one can introduce the
dual equation in general case, and it is not difficult to observe that a more general
counterparts of Lemma 1 hold true.

Lemma 5 . Suppose that characteristic roots vy, 75 of Eq.( 1.2) are real, ny| < |ra],
and f: R — R is a continuous solution of Eq. 1.2).

(i) if ry > 0 and ro > 0, then
& flz2) = f(21)

< <7y z.2€R, 7 # 700
=R

(ii) i r; < 0 and 72 > 0, then
< f(z2) = fla1)

T2 -

222 €R. oy # 2o

when f is increasing; and

fla)=mz +c
for some ¢ € R, when f is decreasing.
(iii) if 1 > 0 and 2 <0, then

fle) = fE)

-y

0< 2.7, € R. 2y # 200
when f is increasing; and
fz)=mz+ec z€R.
for some ¢ € R, when f is decreasing.
(iv) if 11 < 0 and 2 < 0, then

BPFEAES VPN
Ty — 3y

z1.2: €R, 21 # 22

Proof. Step 1. From ( 3.11) in Lemma 4 and the assumption that |ri| < |ra], it
follows that there exists

lim 757 f7(z) = ﬂrL)'rif z€R.
: T 3

(3.19) u(z)
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Since, according to Lemma 3, f is strictly monotone, the iterates f* are increasing
for even n. As the limit of a sequence of increasing functions, u has to be nonde-
creasing. Thus ( 3.19) implies the function z — f(z) — 71z is nondecreasing in R
since 1, > 7y, that is, for z; < z, we have

f(@1) = mizy £ f(22) = 1122,

(o2 = 21) € f(@2) — flo).
and therefore
5] P EEY.EN]

T, — Ty

2,22 €R, 2y # 2.

Similarly, from ( 3.12) in Lemma 4 and the assumption |ry| < ra] it follows that
there exists

~'(z)

(3.21) o(z) = lim 177" (z) =

By the same arguments as in the case of u. the function v : R — R must be
nondecreasing. and the function z — (r;*z — f~}(z)) is nonincreasing in R since
15t =27t < 0. Take z; < za. In view of ( 3.20), f is strictly increasing. so
flz1) < f(22) and
i @) = o 215 flz) - 7
ie.
fla) = f(a1)

(3.22) <. .z €R. 2 # 2o
z; -1,

Relations ( 3.20) and ( 3.22) complete the proof of (i).

Step 2. If r; < 0. 7, > 0, then r;* — 77! > 0. By ( 3.21) the function z —
(r3tz = f~Nz)) is d i When f is i ing we have f(z;) < f(z2) for
2; < 75, and consequently.
it f(21) = 2 S vy fl2) = 2o

which implies the inequality in (ii) of the lemma. On the other hand. when f is
decreasing. f" is also decreasing for each odd n, and the function u in ( 3.19) must
be nonincreasing since 7 > 0. In Step 1 we have proved that u is nondecreasing,
50 u must be a constant function. This together with ( 3.19) completes the proof
of ().

The proofs of (iii) and (iv) are analogous. O
Remark 4. Lemma 5(i) says that f and f~! are strongly monotone, i.c..
(f(1) = f(z2))(21 — x2) 2 maley — 22,

and
(f(@1) = FH(@2)) (@1 = 22) 2 malay =zl
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Lemma 6 . If the solution f : R — R of Eq.( 1.2) has a nonzero fized point, then
one of its characteristic Toots equals 1.

Proof. Assume f(zo) = 2o, zo # 0. It follows from ( 1.2) that zo = a;z0 + doZo,
i.e., @y + ao = 1. Since the characteristic roots 7y and 2 satisfy 7, + 72 = a; and
7y72 = —ag, we have r; + 1, — my7a = 1, i, (1 = my)(1 — ;) = 0. Hence either
m=lorrm=1 =]

4 Second Order Equation-Nabeya’s Theory and
Some Complementary Results

4.1 Noncritical Cases as r79 > 0

In what follows r; and 7, denote real characteristic roots of Eq.( 1.2).

Case 1: 1 <7 <7130

Theorem 2 . Suppose that 1 <ry <1y,

(i) if f : R = R is a continuous solution of Eq.( 1.2), then £(0) = 0 and f, strictly
increasing, satisfies the "two-side” Lipschitzian condition

flz) - f(=)

—z

< <rn z€R, z#z.

(ii) Moreover, Eq.( 1.2) has a continuous solution depending on an arbitrary func-
tion. More ezactly, for every o > 0,2, > 2o, and fy : [tg,2,] — R such that

(4.23) 120 < 71 < T2,

(4.24) fo(zo) =21, folz1) = (1 + m2)z1 — 7220,
and

(4.25) g 1Co h C  S Npp)

z—z

there ezists a unique continuous function p : (0,00) — (0,00) satisfying Eq.( 1.2)
on (0,00), and p(z) = fo(z) for z € [zo,z1]. For arbitrary two initial functions fo
and fop like fo, the function

n(z) z>0
(4.26) flz) = { 0 z=0,
—p2(z) z<0
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is a continuous solution of Eq.( 1.8) in R, where py and p, are functions like

p determined as above by for and fop. The formula ( 4.26) gives all continuous
solutions of Eq.( 1.2) in R.

Proof. For given zo > 0 and z; > 0 in ( 4.23), the sequences {zn}uen and
{2_n}nen. defined by ( 3.15) and ( 3.16), are strictly monotone and

lim 2, =co,  limz_,=0.

B3 oS
Since ( 4.24) and ( 4.25) imply that the given initial function f, satisfies

fo(zo) = 21, fo(z1) = 22, and fo: [20,21] — [21,2]

hitzian b Li o)

is a "two-side” Li we can define
phisms f, : [2n,Zns1] = [Tns1.Tnsa], n € Ny, such that

(4.27) fa(@n) = Tnsrs fal@ns1) = Zasa,
and

2,2 € [Zn,Tnsa), T F 2.

In fact, for a defined f, in ( 4.27) and ( 4.28), we let

(4.29) frsi(z) = (ry 4+ r2)z —mara f7 z € [Zns1, Znsa)-

Obviously ( 4.27) implies fos1(Tns1) = Tasz. and fuss(Tns2) = Zass. Moreover,

by (4.28) we have

i
i< £ 2,2 € [Tns1:Tnsa). T # T,

so it is not difficult to deduce

fanr(2')
Y

n g Fnl® Sy 2.2 € B Zas), H T

By induction the definition of f in ( 4.27) and ( 4.28) is correct.

Similarly, we can also define recursively homeomorphisms f_p : [£_nt1,Z_ns2] =
[Z-n: Z_ns1), 7 € Ng, such that

(4.30) fon(@ons1) =@ons  fon(@ons2) = Tonsrs
and

pot < Fnl®) = Fale)

: 2,5 € [onsr, 2med) 2 £ 7.
P
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In fact we let

(4.31) far(@) = (7 4772 = () fol2), € (2o,

and

(432) fna(z) = (

+r7h)z = () (@), 2 € [BaniBonsa):
‘We omit the same induction procedure here.

Since

fa(2ns1) = fas1(Zas1), n € No,
£ (o) = folzo).
FoM@ons1) = foa(@ons), nE€Ny, n22,

the function

»z) = f..(r) 2 € [2n, Tas) n € No
friz) z€[2-niZonn), nEN

is a continuous function from (0, 00) into itself and satisfies Eq.( 1.2) by ( 4.29).
(4.31) and ( 4.32). Moreover we can extend the fanction p continuously at the end
point 0 such that p(0) = 0, since ( 4.30) implies p(z-s) = 2-ns1 and z_, tends to 0
as n — co. Furthermore, by Lemma 5(i). the above construction allows to obtain
all continuous solutions of Eq.( 1.2) in (0. o).

Observe now that a function g : (—=00,0) — (—00.0) is a continuous solution of
Eq.( 1.2) iff the function p : (0.00) — (0.cc) defined by p(z) = —g(-=z) is a
continuous solution of Eq.( 1.2) iff p = flio.) and q = f|(-x.0) satisfy Eq.( 1.2)
on (0.00) and (=co.0). respectively, and £(0) = 0. Therefore. every continuous
solution f : R — R of Eq.( 1.2) must be of the form ( 4.26). This completes the
proof. a

Remark 5. Take z; = mzo (resp. z; = r22o) in Theorem 2 we get. as the only
possible solution, f(z) = rz (resp. f(z) =z ) for o € (0.c0). In fact, in this case
there is only one initial fanction fo satisfying ( 4.23)-( 4.25). namely fo(z) = mz
(resp. fo(z) =122 ).

Case 2: 0<rm <m<l.

This case can be reduced to the previous one by considering the equivalent equation
(3.10).

Case 3: 0 <y <1<mry

Theorem 3 . Suppose that 0 <7, <1 <7y,
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(i) If f : R — R is a continuous solution of Eq.( 1.2), then f is strictly increasing.
(ii) If, additionally, f has a fized point, then

T z20
flz) = . ij=1.2
7T z<0

(iii) Moreover, every continuous solution f : R — R of Bq.( 1.2) without fized
points depends on arbitrary initial function. More ezactly, for vo = 0 and every
2, >0 (resp.zy < 0) and for every function fy : [z0,2,] — R (resp. fo : [z1,20] —
R) such that

fo(@o) = fo(0) =21 folz1) = (r1 +72)21,

" sMSw 2,2 £0, 242
-
there ezists a unique continuous function f : R — R satisfying Eq.( 1.2) and
F(@) = folw) on [z0.2:] (resp. on [z1.30]).

Proof. By Lemma 5(i) f is strictly increasing. By Lemma 6 wesee that the ouly
available fixed point of £ is 0. Suppose £(0) = 0. Obviously either 0 < f(2) < =
or f(z) > @ for z > 0. In the first case we have that f* approaches 0 as n — oo,
50 ( 3.11) in Lemma 2 implies that f(2) = r;2. In the second case, 0 < f*(z) < z
for > 0. so it follows from ( 3.12) in Lemma 4. with the same arguments as in
the first case. that f~}(x) Lie.. f(z) = rae. The discussion for = < 0 is
analogous. Thus the result (if) is proved as well

As follows we use the method of construction in the proof of Theorem 2 to prove
the result (iii). For the given zo and 2; > 0 in the hypotheses of (iii), the sequence
{2} defined by ( 3.15) (resp. {z_n} defined by ( 3.16) is strictly increasing (resp.
decreasing) and tends to oo (resp. —o0) as n — co. Now in quite a similar way to
the proof of Theorem 2 we can define the sequences {f,} and {f_,} of functions
by (4.29) and ( 4.32). Then the function
flo):= { Pl @€ lmn ] neN,
B CONNE S T R S

is continuous and satisfies Eq.( 1.2). The case z; < 0 can be discussed analogously.

Case 4: 1 <7 < —1.

Theorem 4 . Suppose thatry <13 < —1.
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(i) If f : R — R is a continuous solution of Eq.( 1.2), then f has a unique fized
point 0 and f, strictly increasing, satisfy the “two-side” Lipschitzian condition

f(2) - f(z)

< h
z -2

<, z2€R, z#2.

(ii) Moreover. Eq.( 1.2) has a continuous solution depending on an arbitrary func-
tion, that is, it can be given by the formula

(4.33) flz) = { ;(P_(;; : z g

where p: [0,00) — [0, 00) is an arbitrary solution of the functional equation
P(2) = ((=m1) + (=r2))p(z) = (—m)(=12)z,  z € [0,00).

Here p has been constructed in Theorem 1 for Case 1.

Proof. By Lemma 5(iv) the solution f is strictly increasing and satisfies the "two-
side” Lipschitzian condition. Thus

<7y zmp€R, 2# 2.

If f(z) > 2o (resp. f(zo) < o) for some z, € R. then

f() < f(2o) + 72z = 20) = =00 as z — +oo,
(resp.

f(z) 2 f(zo) + r2(z —20) = +00 as z — —00 ),
that is, there must be z; > o (resp. z; < zo). such that

fl@) <z <2y,
(resp.
f(@1) > 20> 2 ),

By the continuity f must have a fixed point. by Lemma 6, £(0) = 0 and f(z) # =
fora # 0.

In order to prove (ii) it suffices to check that f defined by ( 4.33) satisfies Eq.( 1.2).
For z > 0 we have
f(f2) = f(=p(2)) = p(=(~=p(2))) = P*(2)
= ((=m) + (=r2)p(2) = (-m)(=72)2
= (r+12)(=p(2)) = mirez = (r1 +712) f(2) = Tirpz.
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Similarly for = < 0. o
Case 5: —1 <7 <7r,<0.

This case can be reduced to the Case 4 by considering the equivalent equation
(3.10).

Case 6: r; < -1 <7, <0.
Theorem 5 . Suppose that 1y < —1 < 1 < 0. Then every continuous solution of
Eq.( 1.2) is strictly decreasing and 0 is its unique fized point. Moreover,

f(z) - £

< z.2'€R, z#2'.

The proof is given by Lemma 5(iv) and Lemma 4 as for Theorem 3(i).

4.2 Noncritical Cases as ri7y < 0

Case T: 13 < 0,my # —1,73 > 0,ra # Ly # —1y.

In this case the possible continuous solutions of Eq.( 1.2) are its characteristic
solutions.

Theorem 6 . Suppose that vy < 0,7y # —1,72 > 0,72 # 1 and 75 # -1y, If
f:R — R is a continuous solution of Eq.( 1.2), then f(z) = mz or f(z) =12z
forz € R.

Proof. It is discussed in the following different cases.
(i) Case =1 <1, < 0,0 <7 <1and |ry] <7y

In view of Lemma 5(ii) every decreasing solution is of the form f(z) = mz +c.
Substituting this function in Eq.( 1.2) we can check easily that ¢ = 0. Thus
f(z) =z is the unique decreasing solution. On the other hand, we consider its
increasing solutions. For indirect proof we assume that there exists a continuous
increasing solution f of Eq.( 1.2) different from the characteristic solution z — rz.
By Lemma 6 the function f has no any other fixed points than 0. Since |ry| < 1
and |r;| < 1, in this case by Lemma 4, f*(z) approaches 0 for @ € R as n — co.
The monotonicity implies £(0) = 0. Hence by Lemma 3(ii) we obtain

(4.34) rz < f(z) < z, z>0



161
and
(4.35) z < f(z) < rz, z<0
Note the reason why the inequalities ( 4.34) and ( 4.35) are strict is that f(z) # ryz
for every z # 0. In fact, if f(zo) = 2o for some zo > 0, the inequality of
Lemma 5(ii) implies f(z) < 752 for all z € [0, 2o), and then we have from ( 4.34)-
(4.35) that f(z) = oz for z € [0, 2], s0 f(2) = 22 for & > 0 by the continuously
extension and increasing iteration of Eq.( 1.2). Similarly for zo < 0. Therefore, for
every z > 0, the sequence {f*(z)} should be strictly decreasing and

e < fMz) <z,

and {f="(2)} should be strictly increasing and

z< f(z) <

Take 2 > 0 and put 2, = f*(zy). n € Z. Since {z_ns1}nen, satisfies ( 3.16). by
(3.18) and the monotonicity of {f~(x)} we have &_ns; < T_n, 0.y

By(-n)(mo —1{'z1) = Bi(-n)(zo —r5'z1)
< By(-n—1)(z0=r{'z1) = Bi(-n—1)(z0~15'z1).
Multiplying both sides by the negative constant (r;' — ri')rmra, we get 1{"G >
r;"H. ie.
(r7'72)"G > H. n € Ny,
where
G =710 — 2y — 11720 + 121, H =12o — 2y — miTaTo + 7221,

If G > 0 then
~co = lim (r{r)*7G 2 H,
i

which implies a contradiction. If G < 0 then

G> klim(r,r;.")“H =0,

which is also a contradiction. Consequently, G = 0, i.e., f(z0) = 21 = razo. This
conflicts with ( 4.34). The proofs are analogous for zo < 0 and z < 0. This
completes the proof in the case (i).

(ii) Case 1y < —1,7, > 1L and [ry| > 72,

This case can be reduced to the previous one considering the dual Eq.( 3.10) of
Eq.( 12) for £,

(iii) Case =1 <71, <0,0 <7, < 1and |ry| > 7y



162

In a similar way to the proof of (i), we see by Lemma 3(iii), where r; and r, are
interchanged, that f(z) = 1 is the unique decreasing solution (the constant ¢
in the formula of Lemma 3(iii) must equal 0). On the other hand, we consider
its increasing solutions. For indirect proof we assume that there is a continuous
increasing solution f of Eq.( 1.2) different from the characteristic solution z — ryz.
By Lemma 6 the function f has no any other fixed points than 0. Since |ry| < 1
and |rs] < 1, in this case by Lemma 4,

f"(z) approaches 0 for z € R as » — co. The monotonicity implies f(0) = 0.
Hence by Lemma 5(iii) and the same arguments as in the case (i). we obtain the
strict inequalities

(4.36) 0< flz) <ryz<um, z>0

and

z <rua < f(z) <0, z<0.

Therefore. for every = > 0, the sequence {f"(z)} should be strictly decreasing.
that is. for arbitrary z, > 0, the sequence {z, : z, = f*(x0)}. n € Ny, satisfies
Znsy < Ta. By (3.17) we have r7G < 13 H. ie..
(r{'ra)"H > G. 2 € No.
where
G =2 = oo — 112y +Timazo.  H = 2y — 1ig — 123y + 1.

If G > 0 then

which implies a contradiction. If G < 0 then
0= lim (r{'r)* ' H < G,
which is also a contradiction. Consequently. G = 0, i.e, f(zo) = 2, = r2zo. This

conflicts with ( 4.36). The proofs are analogous for z, < 0 and z < 0. This
completes the proof in the case (iii).

(iv) Case ry < =L > Land |ry] < ra.

This case can be reduced to the case (iii) by considering the dual Eq.( 3.10) of
Eq.( 1.2) for £~

(v)Caser; < —land 0 <7, < 1.

Similarly to the cases (i) and (ii) we apply Lemma 3(iii) interchanging r4 and r,.
Obviously, f(z) = mz is the unique decreasing solution (the constant c in the
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formula of Lemma 5(iii) must be equal 0). On the other hand, suppose there is a
continuous increasing solution f. By Lemma 5(iii)

o < flz) = fl)

<. 2,22 €R, 7 # 2o
T2 =2

Since 0 < » < 1 we see by the contraction principle that f has a unique fixed
point. By lemma 6 the function f has no any other fixed points than 0. Thus
f(0)=0. f(z) <rz <z for z > 0and f(z) > roz for z < 0. The monotonicity
implies that {f"(z)} tends to 0 as n — co. By ( 3.11) in Lemma 4 we see that the
inequalities 7 < —1 and 0 < 7, < 1 imply that f(z) = rsz for all ¢ € R. This
completes the proof in the case (v).

(vi) Case =1 <7y <0and 7, > 1.

This case follows immediately from the case (iv) and the dual equation ( 3.10) of
Eq.( 1.2) for f~%.

This completes the proof of Theorem 6. O

4.3 Special Cases: |ri| = ||

Case 8: 1, =, =1 #0.

Theorem 7 . Suppose thatr, =7, = 7. 7 £ 0 and that f : R — R is a continuous
solution of Eq.( 1.9).

(i) Ifr #1 then f(z) = rz, z€R.

(ii) If r =1 then f(z) =z +c, 2 €R for somec€R.

Proof. By Lemma 4(ii) we have

(4.37) u(z) = lim ﬁ:ﬁf] = f(z)—rz. zER.
(4.38) v(z) := lim ) fiz)-rtz, z€R.
Ty

For r > 1 the function f must be increasing. In fact, if f is decreasing, then,
by Lemma 3, the monotonicity is strict and f? is increasing. Putting n even in
('4.37) and ( 4.38) we see that both u and v are nondecreasing, but the function
@ — u(z) = f(a) - rz is clearly decreasing. Since f is increasing, ( 4.37) and
(4.38) imply that u, v, and v o f are nondecreasing, that is, for z; < 22,

f(z1) =721 < f(22) =722, and 7721 = f(21)) < 7722 ~ f(22))-
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Hence f(23) — f(21) = r(z2 - ,) for all z;,z, € R. Consequently, taking arbitrary
z, =z, and a fixed z, gives

(4.39) flz)=rz+c, z€R,

where ¢ := f(z,) — rz is a constant. On the other hand, for » < 0, the function f
must be d ing. In fact, if fis i ing, the function z = u(z) = f(z) —rz
is clearly increasing, but putting n even in ( 4.37) and ( 4.38) we see that both
and v are nonincreasing. Since f is decreasing, putting  odd in ( 4.37) and ( 4.38)
we see that both » and v are i ing and v o f is d ing, i.e., for
z, < 2,

f(@y) =721 2 flza) =22, and 172y = f(21)) < 7722 ~ f(22))-

Because » < 0, we have f(z,) — f(z1) = 7(z; — ;) for all ;,z, € R, and
consequently, f is of the form ( 4.39). Substituting f(z) = rz + ¢ in ( 3.9)
the equivalent form of ( 1.2), one gets ¢(r — 1) = 0. Thus ¢ = 0, and the proof is
completed. o

Remark 6. Consider the equation

2 - gla

m

a( me. g€ C°(R.R),

proposed by L.C. Bivens [1]. Setting h(z) = g()/m we see that h(2z — h(z)) =
and evidently, h : R — R is one-to-one and onto. Hence, for f = h~} we get

fz) =2f(z) — =. z€R,

i.e., a special case of Eq.( 1.2). Since the characteristic roots are 1y = r, = 1. all
continuous solutions of this equation are of the form f(z) = c. z € R. for some
ceR.

Case 9: 7y = -1, 1y =7> 0.
Now Eq.( 1.2) is equivalent to
(4.40) Fz) =12, z€R,

i.e., Eq.( 3.9) reduces to a problem on iterative roots which has been considered by
M.Kuczmal4]. His Theorem 15.7 and 15.9 in Chapter XV of [5] show that Eq.( 4.40)
not only has continuous increasing solutions but also has continuous decreasing
solutions, all of which depend on arbitrarily given function. In particular, when r =
1, his Theorem 15.2 in Chapter XV of [5] indicates that Eq.( 4.40) has a decreasing
solution, a so-called involutory function depending on an arbitrary function, but
f(z) = z, z € R, is its unique increasing solution.
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4.4 Critical Cases
Case 10: 7y = 1,7 > 0,7y # 1.

Theorem 8 . Suppose that v, = 1,11 > 0,1y # 1, and that f : R = R is a
continuous solution of Eq.( 1.2), Then f has one of the following forms

flz) = =, z€R,

z, z<a
e = {r,z-{»(l—r,)a, z>a,
A = f PN 25

mz+(l-mle, z<a
flz) = (= a<z<h,
Mzt (l-m)h,  z2b

where a.b € R, a < b. Moreover, all these functions are continuous solutions of
Eq.( 1.2).

Proof. Consider first the case 0 < 1, < 1. Let F:= {z € R : f(z) = z}. the
set of all fixed points of f. The set F is a closed interval (or consists of only one
point). In fact, F is clearly closed. If there are two points a.b € F.a < b, such
that f(z) # 2 for all € [a,b], then f(z) > @ for all z € (a,b) or f(2) <  for all
¢ € (a.b), ie.

z € (a.b).

0= flz) b=z

=) =r

This contradicts to the result of Lemma 5(i). Thus F must be a close interval. If

F =R then f(z) =z forall 2 € R. If F = (oo, a), then Lemma 1, Lemma 5(i),

and the fact that f(F) = F imply that f is strictly increasing from (a,00) onto

itself. By the inequality in Lemma 5(i) we have a < f(2) < z for 2 € (a,00). Hence

F7(z) = aasn — oo. It follows from ( 3.11) in Lemma 4 that f(z) = mz+(1—r)a

for z > a. Similar discussions for F = [2,00) and F = [a,b] give the desired

solutions. The case r; > 1 can be reduced to the previous one by considering the
equivalent equation ( 3.10). O

2 € (ab).

Case 11: 7, = 1,1, < 0,7y # —1L.

Theorem 9 . Suppose that r; = 1,r; < O,ry # —1. and thet f : R > R isa
continuous solution of Eq.( 1.2). Then f(z) =z, for allz € R, or f(z) = mz +c,
for all 2 € R, where ¢ is a constant in R .
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Proof. Consider the case —1 < ry < 0. By ( 3.11) in Lemma 4,

= (r2=11) 7 (f(2) = nz).

9(2) == lim f*(z

If £ is increasing then g must be strictly increasing continuous, and from R ont«
R. Thus
flg(@)) = f(Jim f*(2)) = lim [ (z) = g(z), zER

This means that f(2) = z for all = € R. On the other hand, if f is decreasing
then Lemma 5(ii) implies that f(z) = mz + ¢, 2 € R, for some ¢ € R.

The case 14 < —1 can be reduced to the previous one by considering the equivalen

Eq(3.10) O

Case 12: r; = =1,7, > 0,72 # 1.

Theorem 10 . Suppose that 1y = —1,73 > 0,7, # 1, and that f : R — R is
continuous solution of Eq.( 1.2). Then f(z) = —. for allz € R, or f(z) =15
forallz € R.

Proof. Consider the case 0 < 75 < 1. By Lemma 3(iii). replacing the role of r; an
75 we can get the unique decreasing solution f(z) = —z. & € R. If f is increasing
by Lemma 5(iii)

Br) S, wioseR, 21 dus:
}

Thus 0 < r; < 1 implies that £, as a contraction. has a unique fixed point. whicl
in view of Lemma 6, must be 0. Naturally. we also have f(z) < z (resp. f(z) > 1
for z > 0 (resp. z < 0), so f*() tends to 0 for z € R as n — co. On the othe
hand. by Lemma 4 we have

. CD ta) ),
(f(z) +2) = {f@)-r2). z€R

T2
T2+ 1 Ty +

fiz) =

Therefore, f(z) = ry for all z € R. Furthermore, the case r, > 1 can be reduce:
to the previous one by considering the equivalent Eq.( 3.10). O

Case 13: 1y = —1,1; < 0,ry # —1.
Theorem 11 . Suppose that 1y = —1,r, < 0,73 # —1, and that f : R — R is ¢

continuous solution of Bq.( 1.2). Then f(z) = —z, for allz € R, or f(z) = 133 fo
all s & [a,b], for some constants a and. b such that —o0 < a < 0 and 0 < b < +00
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Remark 7. From the proof of Theorem 4 we see that if vy < 0,73 < 0,7y # 2.

then £(0) = 0, and f(z) # z for all z # 0.

Proof. Consider first the case —1 < r; < 0. By Lemma 5(iv)

(4.41) -15%9;«1 s1.2: €R, 7 # 72
R

Clealy f is strictly decreasing. Now we claim that F* := {z € R : f(z) = —a} is
a connected closed interval containing 0. In fact, F* is closed and, from Remark
5.0 € F-. Assume that there are two points @ and bin F*, a < b, such that
f(z) > —2 (resp. f(a) < —2) for all & in (a.b). Then

fO) - f(z)  —b=(=2) _

(4.42) = =1L =ze(ab)
resp.
(4.43) 1. zé&(ab).

Obviously both ( 4.42) and ( 4.43) contradict ( 4.41). i.e., the claim is proved.
Without loss of generality, we let F* = [a.5] for some constants —co < a < 0 and
0<b< +oo. Forw € [a.b], f(z) = —o: For = € [a,8], f(z) = rso. In fact, if
F(x) # 72 for a certain = € [a,b], then from ( 4.41)

-z < f(z) <z <0, z>0,

0<mz < flz) < —z. x>0,

Since f is strictly decreasing,

0<riz< f(rz) < f(z) < f(~z) <z, 2>0,

0> 73z > f(rz)> fi(e) > f(—2) >z, =2<0.

The increasing monotonicity of f2 implies that f2(z) tends monotonically to 0.
By (3.11) in Lemma 4 we see that f(z) = r;z. This contradicts to the choice of z.
Furthermore, the case 7, < —1 can be reduced to the previous one by considering
the equivalent equation ( 3.10).  O.

4.5 No Real Roots

To make this paper selfcontained we shall prove the following.
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Theorem 12 (cf. Nabeya [8]). Eq.( 1.2) has no continuous solutions on R if it
has no real characteristic roots.

Proof. For reduction to absurdity we assume that Eq.( 1.2) has a continuous solu-
tion f : R — R. By Lemma 3 the function f is monotone, onto, and consequently,
f?is strictly increasing. Let the complex characteristic roots of Eq.( 1.2) be denoted
by
7 =a—ib=Sexp(=if), 7 =a+ib= Sexp(if).,

where a,b € R, b > 0,5 > 0, and # € (0,7). By Lemma 6, f(z) # z for every
z # 0. Obviously the sign of the sequence {f**'(z) — f*(z)} is the same (resp.
alternate between —1 and 1) for arbitrary fixed z # 0 when  is strictly increasing
(resp. decreasing). However. from ( 3.11) in Lemma 4 we have

) = S (fe) = ma) + =

P - fle)

= b 'S"(sin(nb))f(z) — b S™*(sin(n — 1)8)z.

Then
&) = (@) = 15U 41V (@),
where
V)= 2L ) = na), V(@)= 2 e — fa).

It is not difficult to check that T(z) = V(z), so for a fixed & # 0 we can let
U(z) = Texp(it).  V(z) = Texp(it).
where T 2 0 and ¢ € [0,27). Thus
F3(2) = f(z) = S"T(exp(i(nf + 1)) + exp(=i(né + t))) = 25T cos(nb + t).
When T > 0. this formula gives a contradiction with the property of sign of the
sequence { f**!(z) - f*(z)} stated above; when T = 0 we see that U(z) = V(z) = 0,

that is. f(2) = ry2 = ry@ for all @ # 0 i.e., 7y = 5, which is a contradiction. This
completes the proof.

4.6 Final Remarks

The results of § Nabeya (8] concerning Eq.( 1.2) are similar (or even the same) but
our paper has its own distinguishing feature in the following:

1. Our paper deals with all cases of 7; and 75, the characteristic values, especially
with the cases where r; = —1 and 7, > 0 in subsection 4.4 case 12, and r, =
—7,73 =7 in subsection 4.3, case 9.
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2. In methodology, Nabeya (8] often discusses the sign of f™(z) — f*(z) as a
sequence of n, but we use the sequence {z,} defined in ( 3.15) and ( 3.16) by
a diff equation to construct inductively the solutions, which can be seen
explicitly in the the proofs of the theorems.

3. In Nabeya’s paper (8] the characteristic values r; and 7 ate supposed to be that
of difference equation

byi = an +ben

{ Ony1 = G +ac,
Cnt1 by teen

[}

which is set up by the relation that f**3(z) = f(f*(z)), but in our paper, in the
light of Euler’s idea to consider formally the solution of exponential function for
ordinary differential equations, we deduce the characteristic equation by assuming
formally that f(z) =rz, z € R, is a solution of the iterative equation.

4. Some statements of our results are different and more concrete, e.g. in Theo-
rem 3, Theorem 8 and Theorem 11.

5 Some Consequences for General Equation of
Order n

As an obvious consequence of the previous section we obtain the following
Corollary. Let a € R, k =1,....n, ao # 0. Suppose the polynomial
- 1

P g — G~ —ao

has two roots 71,72 € R such either 1 < 1y < 7, or 0 < 1 < 72 < 1, o1
0<m<1l<r,orr <<=l or—1<r <1<7 <0, then the continuous
solution of Eq.( 1.1) depends on arbitrary function. Moreover every continuous
solution is a homeomorphism of R.

It is not difficult to prove

Theorem 13 . Leta; > 0, k'=1,..,m, ao #0, be such that ag+ay +...+an = 1.
Iff: R — R is a continuous solution of equation ( 1.1) then f(z) = z for all
220.

An interesting result has been recently proved by W.Jarcayk(3).
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