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ON LINEAR DEPENDENCE OF ITERATES
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Abstract. A functional equation related to a problem of linear
dependence of iterates is considered.

1. Introduction
The pol; ial-like iterative functional equation
20f°@) + Mf (@) + . + Anf(2) = F(z), TEX,

where X stands for a real or complex linear space and f* denotes the k-th
iterate of the unknown function f : X = X, x e., f°(z) =z for z E X and

f*! = fo f* (here "o” denotes the ) is d
extensively, cf. [1]—[11]. An important special case of this equation is
(2) = aer fP7H@) + Guaf"(z) + ... + 207, TEX, 1)

where ag,...an— are real or complex numbers. This functional equation
can be interpreted as linear dependence of iterates of f. In 1974 Nabeya
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[8] discussed (1) for n = 2 and X = R in detail by considering its charac-
teristic equation. However Nabeya’s idea appears to be difficult to apply in
solving equation (1) for n > 3. During the 26th International Symposium
on Functional Equations held in Spain in 1988 the first author presented
the result [6] that the solutions of (1) for n = k are solutions of (1) for
n=m, m >k, if the characteristic polynomial of the lower order equa-
tion ezactly divides that of the higher order one. This statement establishes
a useful relation in the class of iterative equations of type (1), but until now
the proof was not published. In this paper an elementary proof is presented.
Furthermore, based on this result some conclusions how the solutions to be
ruled by the roots of the relevant characteristic polynomials are given.

2. Characteristic equations

Following Euler’s idea for differential equations, we formally consider a
linear solution
flz)=rz, z€X,
of the equation (1) where r € C is indeterminate. From (1) we have

Gt = —ar —ap =0. (2)

Here (2) is called the characteristic equation of equation (1), its roots are
called the characteristic roots, and the leh hand side of (2), denoted by
P,(r), is called the ch. istic pol, I of i (I) By the well

known relations between roots and coeffici of pol; quation (1)
is equivalent to
f(=) - (Zr.)f"' Er.r,)f" (@) + o+ (~1)'1ar0raz = 0
(3)

for z € X, where 71,75, ...,, are n complex roots of the polynomial P,. Let
Fo(r1,72,...,7a)f denote the function of the left-hand side of (3) and call it
n-form of (3). The n-form is uniquely determined by given ry, 7y, ...,7, € C.

Lemma 1. For fized 11,73, ..., Tn41 € C, if Fo(r1,72,...,7)f = 0 then

Fopa(ryy s Tny T )f = 0.
Proof. Since F,(r1,72,..,ma)f =0, i.e., f satisfies equation (3), we have
(@) = fY(F(2) = (o) (@) = o) f*7 (@) + ..
i=1 i<j

+(=1)"rrpra f(z), zEX.
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Thus, for all z € X, the (n + 1)-form satisfies

Fogr(r1s oy 1) f(2)
sl 1

="(@) = () (@) + (o rr) 27 (@) + e+ (1) rinsranz
= i

= (Crim S~ (S = S rr) 1 e)

F o+ (=)™ iy T
= 7ot fM@) + s ) (@) = raa (3 rery) 7% (a)
p=t i<

ot (=)™ 1@ = =Ty Fo(ry,ma, ) () = 0.

[m]
Now we can prove the result presented in [6].

Theorem 1. Suppose that
Q(r) =r* —bpyrt1 — = by — by,
P(r)=r1"—an " — .. — a7 — ao,

are polynomials, where r € C, k < n, and that Q|P, i.e., P is ezactly
divided by Q. If a function f: X — X satisfies the functional equation

FE(@) = beoa £ (@) + bya f* 2 (2) + o+ Boz, TEX, (4)
then f satisfies functional equation (1), i.e.,
F(2) = Guor f"7H(T) + Guaf"2(2) + o + a0z, TEX.

Proof. Let r1,7s,...,7, be complex roots of P. Since Q|P we may assume
without any loss of generality that ry,...,rx, k < n, are roots of Q. From
the definition of F; and (4) we have

Fy(ry,ra,0smi) f = 0.
By Lemma 1, the function f also satisfies
Fepa(ry, ooy Ty i) f = 0.
Thus, by induction, we can prove easily that
Fo(r1,72,.0,m0)f =0,
that is, f satisfies equation (1). O
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Remark 1. Equation (1) of order n has a solution which does not satisfy
the equation (4) of order k if Q|P but Q # P.

In fact, if all roots 7y, 72, ..., 7, of P are real and only ry,72,...,7x, k<n,
are roots of Q, then f(z) =rz, z€X, i=k+1,..,n, satisfies (1) but
is not a solution of (4).

Remark 2. Let X = R and suppose that the coefficients in equation (1)
are real. If ro is a complex root of the characteristic polynomial P, with
imaginary part Sty # 0, then all solutions of the real 2-order iterative
equation

f*(2) = 2Rrof (z) = Irof*z,
where Rro denotes the real part of 7o and |ro| denotes the modulus of rg,
satisfy equation (1).

This assertion is a cohsequence of Theorem 1 and the fact that the con-
Jjugacy 7 of 7o is also a root of P,.

3. Iterations of solutions

For convenience, let F,_y(r1,...,7%,...,7s) f represent the (n — 1)-form of
(3) determined by n — 1 characteristic T00tS 7y, ..., Tk—1, Tki1s ooy -

Theorem 2. Suppose that the characteristic polynomial P, in (2) has n
pairwise different roots ry,...,v, and that f : X — X is a solution of fuc-
tional equation (1). Then for any integer m > 0,

A A. A,
frim = Tlhepeig o Shopeig, gy Sy, ®)
where
gk = Fuoa(ry s Ty ™) fy E=1,2,.0m,
and A and Ay, k = 1,2,.,n, denote respectively the determinant and
algebraic adjuncts of the matriz
1-Yinti TicaTits - (=1)*'rorgr,
A= L= Tiggatiti - (m1)"'rirs.r, _ ©)

N L=Tanti Sigpnriry o (C)"iraray
Here 3.4, and its like denote the summations with respect to the indezes
from 1 to n with some shown restriction.
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Proof. Write equation (3) in the equivalent form

=T+ (X ) 4 e+ (F1) e f
in i<jin

=1 f" = () e (1) O

i#n

By the definition of g, with k = n, we have
9n 0 f ="Tngn-

Thus, for every non-negative integer m,

gno 7 =120,
that is,

= ™ b+ (S g T = g,
i#n

is a linear equation for fr*m, fr*m=1 _ fm+1  Similarly, for each fixed

k, k=1,2,..,n—1, we get another linear equation. Thus we obtain a
system of n linear equations, expressed by

AF =G,

where A is a matrix defined by ( 6), F and G are transposes of the vec-
tors (f+m, frtml | fmH) and (1] gy, r gy, .., 1+ g,), respectively.
Applying repeatedly elementary linear transformations on the rows of A we

obtain
n

A=detdA= [] (r;—r) #0,
i<j=1
ie., A is invertible. Now formula (5) is a direct consequence of Cramer’s
rule.

Corollary 1. Suppose that the polynomial P, in (2) has n pairwise different
r00ts Ty,...,7, and that f : X — X is a solution of a k-order equation of
the form (1) whose characteristic polynomial Q) ezactly divides P,. Then
f™*™ is a sum of the suitable k terms which appear in (5).

Proof. Since Q|P,, we may assume without any loss of generality that
the first k numbers ry,7,...,7 are the k roots of Qx. Thus the function f
satisfies the equation Fy(ry,7s,...,7x)f = 0. By Theorem 1,

Fosi(r1, s Thy oo Tiy ooy ™) f =0, i=k+1,..,n,
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that is, according to the notations in Theorem 2, g; =0, i=k+1,..,n.
By Theorem 2,

A 4
prbm %,;mg " irmﬂgz __— f‘rm-ﬂg‘” m>0,

which completes the proof. O

Remark 3. It is easy to verify that a solution f : X — X of ( 1) is one-
to-one if ay # 0; if moreover X = R and f is continuous then it is strictly
monotone and onto. If ag # 0 then, by (2), the characteristic polynomial of
equation (1) has no zero root.

Obviously, if ag # 0 and f is onto then equations (1) and (3) are equiva-
lent, respectively, to
Gn-1

FE) = =) b B0+ 2a, sex, (1)
ao ) ag

and

—(ZS)f (= l’-#(Es 57 o+ (<1) 8180800 = 0, (8)

where f=* denotes the k-th iterate of f~! and s; = r;{',i = 1,2,..,n. In
fact, in this case f is invertible, maps X onto itself and satisfies (1). Usually
(7) and (8) are called the dual equations of (1) and (3), respectively. The
following result is the dual counterpart of Theorem 2.

Theorem 3. Suppose that the hypotheses of Theorem 2 hold. If f is onto
and ag # 0 in (1) then, for any integer m >0,

A . A ~ Am -
f-(,.+m)=%s;..+1g +fs;““g e o +Tsm+ly'"

where §.~,A and /i,-,, i =1,2,..,n, are just modified g;,A and Ay, i=
1,2,..,n, defined in Theorem 2 where r; is replaced by s;, j =1,2,...
and f is replaced by f~*.
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4. Some properties of solutions

Assume that X is a normed space, o # 0 and that the characteristic
polynomial of equation (1) has n pairwise different roots 71,7, ..., 75.

Corollary 2. Let f : X — X be a continuous solution of equation (1).
1° If |ri| < 1 for all k = 1,...,n, then f* approaches 0 as k = +00;
2° If f is onto and |re| > 1 for all k = 1,...,n, then f* approaches 0 as
k = —oo;
3° In both cases 0 is a unique fized point of f.

Proof. Letting m — +oo in (5) gives 1°. Similarly 2° is a consequence of
the formula in Theorem 3. To prove 3° assume that f(zo) = z, for some
o # 0. From (3),

n n
2o — (3 r)z0 + (3 rirs)To + oo + (=1)"1i7.nZo = 0,
i=1 i<j

that is, []J_; (1 — ;) = 0. Thus at least one of 7;, i=1,2,...,n, would be
equal 1. This contradicts the hypotheses in 1° and 2°. Therefore f has no
non-zero fixed point.

Now the relation f(0) = 0 is an obvious consequence of the continuity of
the function f. O

In the next result we assume that X = R.

Corollary 3. Suppose that f : R — R is a strictly increasing and contin-
uous solution of equation (1). The following results are true.

PI-1<m<u<rpa<l<rmon<-l1<mn<..<rmn<l,
and if f(z) < z for all z > 0 and f(z) > z for all z < 0, then f
satisfies

Faos(r1,e0mnoa)f =0 or Fooy(ra,yra)f =0

LIH<r <<t <=-1<rporr <1<1y<..<1y,, and if
f(z) >z for allz > 0 and f(z) < z for all z <0, then f satisfies

Fai 07 Ti )1 =0 or Faoalrghyer)f 7 = 0.
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Proof. By similar arguments as in the last corollary it is easy to show that,
in both cases, 0 is a unique fixed point of f in R. To prove 1° assume that
-1<7r <..<r.y <1< r,and take arbitrary z > 0. Since f is
increasing, we have

z> f(z) > f(z) > .. > f¥(z) 20, ask—+oo, z>0.
Similarly, for arbitrary z < 0, we have
z < f(z) < f(z) <. < f¥(z) 0, ask—+oo, z>0.

By Theorem 2, g, vanishes, i.e., Fo1(r1,...,;7n-1)f = 0 because |r;|* —
0,i =1,2,..,n — 1, and |r,|* does not as k — +oo. Similarly, applying
Theorem 3, we can prove 2°. [J
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