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Introduction

Let I C R be an open interval. A function M : I x I — I is a mean on I if for all
zy€el,
min{z,y} < M(z,y) < max{z,y}.

A mean M on [ is strictifforallz, y € I, & # y,
min{z,y} < M(z,y) < max{z,y}.

The classical mean value theorem associates to every differentiable function
g:1— R astrict mean M, on I such that

D90 g (@), wtw myel )

If h := ¢ is invertible, we can write the mean M, in the form

)

My(z,y) =h7! z#y, z,yel

(g(r) -9(v)
z-y
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In this context the problem of characterizations of means which can be written in
this form arises. In a natural way it leads to the equation

—1(9(1)79(1/)) :H_l(f(rizi(y))’ 5y sy el

Ty
(the uniqueness of the representation) which reduces to the functional equation

9(2) —9() _ (f(Z) f(y))

3 I,
F T#Y, T, Y€

with three unknown functions f, g and ¢. Assuming that f is strictly convex or
strictly concave, we prove that ¢(u) = au+ b and g(z) = af(x) + bz + ¢, for some
a, b, ¢ € R (Theorem 1). This is the basic result of the paper. It turns out to be
a convenient and effective tool in solving the functional equations of the form

L) _haer),  stw mvel, @

where M is a strict mean.
In Section 2 we apply Theorem 1 to the functional equation (1) where M =

E, : (0, 0)? = (0, ), p € R, is the generalized logarithmic mean (cf. Bullen,
Mitrinovié, Vasié (4], p. 346):

groyr \ M=)
(55)" oo
Bo(@9) =\ Ey(z,9), p=0 (3)
Ey(z,y), p=1

for all z, y >0, z # y, and E,(z,z) := z, for all p € R, and z > 0, where

ey o1 (g Ym2)
Bo@y) = oy Br@n): (v¥27%) ’

to get some characterizations of power and logarithmic functions. From the main
results of Section 2 we obtain the following corollary:

In all cases Ep, p # ¢, pg # 0, is the mean associated, by (1), with the function
g(z) = zP; and the main result of Section 2 shows that this association is, up to a
constant factor and a linear function, unique; more generally if (2) is satisfied with
M = E, then g(z) = az® + bz +c¢, h(z) = g'(z). Analogous results are shown for
the cases p=0,1.

The case p =2k, k €N, and g, h : R = R, treated independently, gives, as a
special case, the result of J. Aczél [1].

Note that the function h is the derivative of the corresponding function g. It is,
under some regularity assumptions, an immediate consequence of the functional
equation (2).
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In Section 3 we apply Theorem 1 to describe the solutions g and h of the more
general functional equation

9(z) —9(y) _

To—g ~MEeEy),  s#v @
where E, , is the two parameter family of Stolarsky means defined below in (7),
related to the Cauchy mean value theorem. As above E ,, p # g, pg # 0, is asso-
ciated, by (4), with the functions g(z) = z®, h(z) = J—l( o3 again, this association
is shown to be unique in the sense described above. The other cases of p, ¢ have
analogous results.

In Section 4 we apply Theorem 1 to some special functional equations of the
form (2).

Functional equation (2) in which M is the arithmetic mean was considered by J.
Aczél in [1], by J. Aczél and M. Kuczma in [2], [3] for quasi-arithmetic, geometric
and harmonic means, and for the quasi-arithmetic mean by M. Kuczma in [9], by
different methods.

For a fairly broad view of the means considered here, together with many ref-
erences and some indication of directions for their future study, see A. Horwitz [7].

1. When a composition of a function and a difference quotient is
a difference quotient

Let I C R be an interval and f : I — R a function. Put
A= {(z,z):z €I},

and denote by Jy the range of the function of two variables which is the difference
quotient of f:

FCEFION
(IxI\A)3 (z,y) — =
A key role is played by the following

Lemma. Let I C R be an open interval and f : I — R strictly convex or strictly
concave on I. Then ¢ : J; — R satisfies the functional equation

¢(f(zz):£(y)) :z%;a (f(zi:2(1)> =ty ( (Zi_i(y))) )

forallz,y, z€1, z#y#z#z, if, and only if, for some a, b€ R,

¢(u) = au+b, u € Jy.
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Proof. Suppose first that f is strictly convex. Then Jy is an open interval and for
every ug € Jy there exist § = d(up) > 0, a = a(u), B = B(u), @, B € [0,1],
a < B, such that for every u,v € (ug — 6,up + ) N Jy and ¢ € (a, 8), the system
of equations

f@ -5 _, 1&-16) _, z-z

s s =t,
=] z—y -y

has exactly one solution z = z(u,v,t), ¥y =y(u,v,t), z=2(u,v,t) € I.
Let us fix arbitrary ug € Jy. Since

LG} S
z-y

equation (5) implies that

d(tu+ (1= t)v) = té(u) + (1 —)¢(v), u,v € (ug—8,ug+8)NJs, tE€(a,pB).

hence applying an argument of Daréczy and Pales [5], which is based on the
identity

7”2'” :t(tu+v+(l—t)u) +(1-t) (w+(1—t)"+”)
we infer that ¢ is Jensen affine on (ug — &,ug + 6) N Jy, i.e.,

¢($) - w, uv e (uo=bup+8)NJ).

Moreover, for all u, v € (ug — &,up + 8) N Jy, v < u, we have
S(tu+ (1 - tv) <max(d(u), ¢(v)),  t€ (),
which proves that ¢ is bounded above on the interval ((u — v)a + v, (u —v)3 +v).
It follows that ¢ is continuous and, consequently, (cf. M. Kuczma (8], p. 316,
Theorem 3 and Theorem 2), there are a = a(ug), b = b(ug) € R such that
¢(u) =au+b, u € (ug — §,ug + 8) N Jy.
Now it is obvious that a and b do not depend on ug and
é(u) = au+b, u € Jy.

In the case when f is strictly concave the proof is analogous. [m]
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Remark 1. Assume that the function f in this lemma is differentiable. Then
for all z, y € I, y < z, and for arbitrary partition y =t < t1 < ... < tn =z,
equation (5) implies that

O G S D ST OV [
k=1

for some sy € (tx—1,t), k =1,... ,n; and consequently,

(f(r) f(y)>

z-y

1 2 .
= /y o ®)at.

Remark 2. If the function f : I — R has the following property:
“for every u, v € Jy, and every t € (0,1) there ezist z, y, z € J such that

f@) - f(z) &) -f6) _ z-z

-z z—y T-y

=t

then the proof of the lemma is immediate. In fact, equation (5) implies that for
allu,v € Jy, t€(0,1),
d(tu + (1 —t)v) = td(u) + (1 — t)p(v)

and consequently, ¢ is affine and continuous. Simple geometrical consxderatmns
show that the functions f : (0,00) — R, f = log; and f : R — R, f(z) = 22*
k €N, f := exp, have this property.

The above lemma allows us to prove the main result of the paper which reads
as follows

Theorem 1. Let I C R be an open interval, f, g: I = R, and let J; stand for
the range of the two variable function

f &)= 14)

(zy)—» z,y€l, z#y.

Suppose that f is strictly convez or strictly concave on I. Then ¢ : Jy — R
satisfies the functional equation

9(2) —9() _ (f(z) f(y))

L,y el ) 6
e " z,y z#Y (6)

if, and only if, there ezist a, b, c € R such that

$(u) = au+b, u € Jy,
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and

9(z) =af(z) +bz +c, zel.

Proof. Suppose that ¢ satisfies equation (6). We can write this equation in the

form
o) = - o (L2100 1 g

Since the left hand side does not depend on y, it follows that
o0 == (L2 g, mzer azs

and

9(y) = (y—1)¢(ﬂy) ﬂz))ﬂz(Z), y,2€l, y#z.

Hence, making use of the identity g(z) — g(z) = [g(z) — 9(¥)] + [9(y) — 9(2)], we
infer that
(e (£)=12)

== y)é(f(r) f(y)) ( z>¢(f(y) f(2)>

forallz,y, 2 € I,z # 2z #y # z, i.e. that ¢ satisfies the functional equation (5).
Now the Lemma gives ¢(u) = au + b for some a, b € R, and all u € Jy. Setting
¢(u) = au+b, u € Jy, in (6) we conclude that g(z) = af(z) +bz+cforallz € I.

Since the converse implication is obvious, the proof is completed. o

2. The mean value property and related functional equations for
generalized logarithmic means

Let Iy C R be an arbitrary interval. If M : Iy x Iy — R is a mean on Iy then,
obviously, for every subinterval I C Iy we have M(I x I) =

We shall consider functional equation (2) in which M is a given mean on Iy and
the functions g, h : I — R, I C Io, are unknown. It should be emphasized that
we do not assume any regularity conditions of the functions g and h. However let
us note the following

Remark 3. Suppose that M : Ip x Iy — Ip is a mean and g, h : [ — R, with
I C I, satisfy equation (2). If M is continuous on the diagonal A := {(z,z) : z €
Ip}, and h is continuous, then g is differentiable and g’ = h.
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In this section we apply Theorem 1 to ine the functions g and A satisfying
the functional equation (2) where Iy = (0,00) and M = E, is a fixed generalized
logarithmic mean defined by (3).

The first result of this section reads as follows.

Theorem 2. Let I C (0,00) be an open interval, andp € R, 0 #p # 1. Then g,
h:I— R satisfy the functional equation

@) - 9) ( -y )““‘*"
=h N zyel, z#y,
z-y pl@—-y) v #u
if, and only if, there are a, b, ¢ € R such that
g(z) = az? + bz +c, hz)=g'(z), zel

Proof. Let I, be the pre-image of the interval I for the power function u —
(u/p)!/®=1). Define ¢ : I, — R by

) e

and f: I — R by f(z) = 2P, z € I. Then the considered functional equation
takes the form (6) (here J; = I,). Since the function f is of the class C! and f'
is strictly monotonic, in view of Theorem 1 there are a, b, ¢ € R, such that

é(u) = au+b,u € Jp,

9(z) = af(z) + bz +c=azP + bz +c, zel.
The definition of ¢ gives
h(z) = apz? ' +b, zel
As the converse implication is easy to verify, the proof is completed. [m]

Since E is the arithmetic mean restricted to the set (0,00)2, taking p = 2, in
the above result we obtain the following

Corollary 1. Let I C (0,00) be an open interval. Then g, h: I — R satisfy the
functional equation

g(r;:i(y)=h(’”2ﬁ>, z,yel, a#y,
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if, and only if, there are a, b, ¢ € R such that

g(z) =az? +bz+c, h(z)=g'(z), zel.

Let us note that in the papers by J. Aczél [1], and Sh. Haruki [6] the case
I =R was considered. In this connection we refer the reader to Theorem 5 below.

Since E_; coincides with the geometric mean, taking p = —1 in Theorem 2
gives

Corollary 2. Let I C (0,00) be an open interval. Then g, h : I — R satisfy the
functional equation

=
——g(igz(y):h(\/@), zy€l, z#y,
if, and only if, there are a, b, c € R such that

g(z):%+bz+c, h(z) = ¢'(z), zel.

In Theorem 2 we assume that 0 # p # 1, i.e., in the considered functional
equation, neither the logarithmic mean Eg nor the identic mean E; is admitted.
Now we shall treat these two cases seperately.

Theorem 3. Let I C (0,00) be an open interval. Then g, h: I — R satisfy the
functional equation
9@ -90) _,(_2-v
-y logz —logy
if, and only if, there are a, b, ¢ € R such that

), ny€l, z#y,

g(z) =alogz +bz+c, h(z)=g'(z), zel

Proof. Let f := log. Then Jy = {z7 : z € I}. Define ¢: J; = R by ¢(u) =
h(u™1), u € J;. Then the considered functional equation can be written in the
form (6). Since log is strictly concave, the result follows from Theorem 1.

Remark 4. Note that Remark 2 supplies us with a shorter proof of Theorem 3.

Theorem 4. Let I C (0,00) be an open interval. Then g,h : I — R satisfy the
functional equation

9@) —9) _ (8_1 (y%_,)l/(v—z)), EGEL, TEY;

z-y
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if, and only if, there are a, b, ¢ € R such that

g(z) =azx(logz — 1)+ bz +c, h(z) = ¢'(z), zel.

Proof. We have

Ey(z,y) =

-1 (yyz—z)l/(vﬂ) = expolog (e—l (yyz—z)l/(v—Z))

- (z(logz —1) —y(logy — l))
z-y
for all z, y > 0, = # y. Hence, setting

f(z) ==z (logz - 1), z>0,

¢ = hoex , we can write the considered functional equation in the form
P log(r)
(6). Since f is strictly convex in (0, c0), the result follows from Theorem 1.

Obviously, the natural domain of the arithmetic mean is R2. On the other
side the common domain of all members of E, is (0,00)2, This explains why in
Corollary 1, where the case Ey is considered, we assume that I C (0,00). To
avoid this inconvenience let us note the following result which is a complement of
Theorem 2.

Theorem 5. Let I C R be an open interval and k a fized positive integer. Then
g, h: I = R satisfy the functional equation

9() — o) <z2“ - y“)
= =h| 77—, z,y€l, = N

z-y 2z -y) Y 74
if, and only if, there are a, b, ¢ € R such that

9(z) = ac®* + bz + ¢, h(z) = ¢'(z), z€el

For the proof it is sufficient to assume p = 2k in the argument used in the
proof of Theorem 2. Note also that an application of Remark 2 one gives a shorter
direct proof.

Taking k = 1 and I = R we obtain the result of J. Aczél [1].
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3. The mean value property and related functional equations for
Stolarsky means

Now we consider an important class of means that is related to the Cauchy mean
value theorem, the two parameter family of Stolarsky means E,, : (0,00)% —
(0,00) (p,q € R) defined by (cf. [10], also [4], p. 345)

g, at—yf
P

1/(p-4)
) , PEG PIFQ T Fy

L ety \MVe
(;-W{gg—y) » p=0; g#0; z#y

. geige \UF o
B = (} mstgm) - pAG 4=zt . (1)
(e3)- (%)™, p=a#0 sy
Ve p=¢=0; z#y
&) pgER z=y

This family contains the generalized logarithmic means, as we have
Ey=FEp, peR

Note that the harmonic mean E_p _ is not an element of the family of the gen-
eralized logarithmic means.

‘We shall apply Theorem 1 and the results of the previous section to determine
the functions g, h: I = R, I C (0, 00), satisfying the functional equation

%Ey‘):h(%y(ryy)), z,yel, T#y.

Also here we do not assume any regularity conditions of g and h. Note however
the following obvious

Remark 5. Let M : Iy x Ip = Iy be a mean, I C I an interval, and v, g,
h: I — R arbitrary functions. Suppose that v is bijective and

9@) -9y _
SRS A) hM(z,y)), @ yel, z#y.

If M is continuous on the diagonal A := (z,z) : € Iy, the function v is differen-
tiable, and h is continuous, then g is differentiable and

h=L
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‘We start with the following

Theorem 6. Let I C (0,00) be an open interval, and p, ¢ € R, p # q, pg # 0.
Then g, h: I — R satisfy the functional equation

9(z) - 9(y) :h[@‘ﬂ_w)u(p—q}y e

T4 —yt p xi—yl
if, and only if, there are a, b, ¢ € R such that

9'(2)

=G el

9(@) =as? +bat+c,  h(z)

Proof. Replacing z and y by 2/% and y/¢ in the considered functional equation,
we get

1/q) _ 1/q /g _ ool Y/ (P-9)
9@ -9l ):h[<g_zw y”") ., myel’, z#y, (8)

z-y P -y

where 17 := 29 : ¢ € I. Let I, be the pre-image of the interval I7 for the power

function u — (p~1qu)"/ ™. Tntroducing the functions ¢ : I,,, = B, f: I » R
and G : I* — R defined by

6w =h [(g ,u) "("_")] . et

F(@) == a?/1, G@)i=g(aV1),  wer,
we can write the functional equation (8) in the form

G =Gl _, (f(l) —f(y)) )

z-y

.
=y Tyl z#y.

Since the function f is continuously differentiable and f' is strictly monotonic, we
can apply Theorem 1 (with Jy = I, ). Thus there exist a, b, ¢ € R, such that

¢(u) = au+b, u€ Jp,

and
G(z) =af(z) +bz+c=az?/I+bz+c, z€l.
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Now the definitions of ¢, G and f give

h(z) = apg~taP~9 + b, 9(z) = az? + bz’ +¢, zel.
Since these functions satisfy the considered functional equation, the proof is com-
pleted.

Taking p = —1 and ¢ = —2 in Theorem 6 gives the following result for the
harmonic mean.

Corollary 3. Let I C (0,00) be an open interval. The functions g, h : I = R
satisfy the functional equation

g(z)fg(y):h(:%) zyel, oy,

if, and only if, there are a, b, c € R such that

T2 —y-2

g(z)=£+z%+c, h(a:):%, zel

The functional equation of Theorem 6 makes no sense for ¢ = 0. However for
Eop,p#0, (ie. for the mean E, , with ¢ = 0 and p # 0), as a simple consequence
of Theorem 3, we obtain the following

Corollary 4. Let I C (0,00) be an open interval and p € R, p # 0. Then g,
h: I — R satisfy the functional equation

g(z)—g(y)=h((l_ ik )1/1’)’ z,y€l, a#y,

P — yP p logz —logy

if, and only if, there are a, b, c € R such that

"
9(z) = ap-logz + ba” + ¢, h(z) = gz(f)) zel

Applying again Theorem 1 (or Theorem 4 with g replaced by g(z'/¢) we obtain
the following result for the mean Eq , with g # 0.

Theorem 7. Let I C (0,00) be an open interval, and ¢ € R, ¢ # 0. Then g,
h:I— R satisfy the functional equation

9(z) — " _ 1/(y*~2?
———(Ig_zgy) :h(e e (:r zqy”q) ,  my€el, z#y,

if, and only if, there are a, b, ¢ € R such that
9() = az? (loga? — 1) + ba% +¢,  h(z) =aq-logz+b, z €l
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4. Some other means and applications of Theorem 1

In this section we show that Theorem 1 allows to characterize all elementary
functions by their mean value property.

Theorem 8. Let I C R be an open interval. Then g, h : I — R satisfy the
functional equation

- T _ ey

9@) 9@ _ (loge e

LY -y

if, and only if, there are a, b, c € R such that

), zy€l, z#y,

g(z)=a-e*+bz+ec, h(z) = ¢'(z), zel

Proof. Put ¢ := h olog and apply Theorem 1. o

Theorem 9. Let I C (0,7) be an open interval. Then g, h : I — R satisfy the
functional equation

9(z) —g9(y) sinz —siny
=h s sy el s
Ty arccos =y T,y € T#Y,
if, and only if, there are a, b, c € R such that

g(z) =a-sinz+bz+c, h(z) = ¢'(z), zel

Proof. The function f := sin satisfies the assumption of Theorem 1. Putting

|©0.7)
¢ := ho arccos we can apply Theorem 1. o

In a similar way one can ch ize the

Theorem 10. Let I C (0,00) be an open interval. Then g, h: I — R satisfy the
functional equation

g(r)—i(y):h<( it 1>W>, z,y€l, z#y,

T-y arctang — arctany

if, and only if, there are a, b, ¢ € R such that

g(z) =a-arctanz + bz +c, h(z) = g'(z), zel

Proof. The function f :

= arctanl(o oo satisfies the assumption of Theorem 1.

Putting é(u) := h [(u’l -1t 7} we can apply Theorem 1. o
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5. Final remark

Under some regularity assumptions on functions g and h, a more general functional
equation

9(z) —9(v)
m=¢(M(1vy))v zyel, z#y,

related to Cauchy mean value theorem, will be considered in our next paper.

References

[1] J. AczEL, A mean value property of the derivative of quadratic polynomials — without
mean values and derivatives, Math. Mag. 58 (1985), 42-45.

[2] J. AczEL and M. Kuczma, On two mean value properties and functional associated with
them, Aequationes Math. 38 (1989), 216-235.

[3] J. AczEL and M. KUCZMA, On two related types of functional equations describing mean
value properties, Zeszyty Nauk. Politech. Slask. Mat.-Fiz. 64 (1990), 27-35.

[4] P.S. BULLEN, D. S. MITRINOVIC and P. M. VAsIC, Means and their inequalities, D. Reidel
Publ. Co. Dordrecht-Boston-Lancaster-Tokyo, 1988.

[5] Z. DarGCzY and Zs. PALEs, Converity with given infinite weight sequences, Stochastica 11
(1987), 5-12.

[6] SH. HARUKI, A property of quadratic polynomials, Amer. Math. Monthly, 86 (1979), 577-
579.

(7] A. HORVITZ, Means, lized devided di of ing hyper-
planes, J. Math. Anal. Appl. 200 (1996), 126-148.

(8] M. Kuczma, An introduction to the theory of functional equations and inequalities; Cauchy’s
equations and Jensen’s inequality, PWN and Uniwersytet Slgski, Warszawa-Krakéw-Kato-
wice, 1985.

[9] M. Kuczma, On the quasi-arithmetic mean in a mean value property and the associated
functional equation, Aequationes Math. 41 (1991), 33-54.

[10) K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87-92.

J. Matkowski

Institute of Mathematics
Pedagogical University
Plac Stowiaiiski 9
PL-65-069 Zielona-Géra
Poland

or

Institute of Mathematics
Silesian University
Bankowa 14

PL-40007 Katowice
Poland

Manuscript received: April 20, 1998 and, in final form, September 12, 1998.



